1.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
2.Quantitative research on general practitioner policies in China from 1997 to 2023
Xinru MA ; Yanxin ZHOU ; Mengyu YAN ; Jing LI ; Shujie SONG ; Mei SUN
Shanghai Journal of Preventive Medicine 2025;37(1):4-10
ObjectiveTo understand the development stages and use of policy tools of general practitioner policies in China since it was first proposed, to summarize the experience and explore the shortcomings, so as to provide references for the adjustment and optimization of China’s general practitioner policies. MethodsContent analysis and mathematical statistics analysis were used to conduct a quantitative research on 111 policy documents with 422 policy items involving general practitioners at the national level from 1997 to 2023, through a three-dimensional analysis framework integrating policy tools, human capital process and policy development stages. ResultsCapacity‑building policy tools were most frequently used in general practitioner policies, and the policy tools gradually shifted from mandate to inducement. The general practitioner policies paid less attention to the career selection link, but paid full attention to every segment of human capital links, with a comprehensive application of policy tools observed in the integrated development stage, despite the existence of unbalanced internal distribution. ConclusionIt is suggested to promote the use of incentive policy tools and to explore multiple approaches based on incentive theory; pay attention to the career selection link for guiding the employment of general practitioners; take the appropriateness between the policy tools and human capital process into comprehensive consideration, striking a dynamic balance of the internal structure of general practitioner policies.
3.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
4.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
5.Phenylpropanoids from roots of Berberis polyantha.
Dong-Mei SHA ; Shuai-Cong NI ; Li-Niu SHA-MA ; Hai-Xiao-Lin-Mo MA ; Xiao-Yong HE ; Bin HE ; Shao-Shan ZHANG ; Ying LI ; Jing WEN ; Yuan LIU ; Xin-Jia YAN
China Journal of Chinese Materia Medica 2025;50(6):1564-1568
The chemical constituents were systematically separated from the roots of Berberis polyantha by various chromatographic methods, including silica gel column chromatography, HP20 column chromatography, polyamide column chromatography, reversed-phase C_(18) column chromatography, and preparative high-performance liquid chromatography. The structures of the compounds were identified by physicochemical properties and spectroscopic techniques(1D NMR, 2D NMR, UV, MS, and CD). Four phenylpropanoids were isolated from the methanol extract of the roots of B. polyantha, and they were identified as(2R)-1-(4-hydroxy-3,5-dimethoxyphenyl)-1-propanone-O-β-D-glucopyranoside(1), methyl 4-hydroxy-3,5-dimethoxybenzoate(2),(+)-syringaresinol(3), and syringaresinol-4-O-β-D-glucopyranoside(4). Compound 1 was a new compound, and other compounds were isolated from this plant for the first time. The anti-inflammatory activity of these compounds was evaluated based on the release of nitric oxide(NO) in the culture of lipopolysaccharide(LPS)-induced RAW264.7 macrophages. At a concentration of 10 μmol·L~(-1), all the four compounds inhibited the LPS-induced release of NO in RAW264.7 cells, demonstrating potential anti-inflammatory properties.
Plant Roots/chemistry*
;
Animals
;
Mice
;
Berberis/chemistry*
;
RAW 264.7 Cells
;
Macrophages/immunology*
;
Drugs, Chinese Herbal/isolation & purification*
;
Nitric Oxide/metabolism*
;
Molecular Structure
;
Anti-Inflammatory Agents/isolation & purification*
6.Prognostic value of serum CD4+ and NK cells for the treatment response in children with aplastic anemia.
Chun-Can WU ; Mei YAN ; Hailiguli NURIDDIN ; Xu-Kai MA ; Yu LIU
Chinese Journal of Contemporary Pediatrics 2025;27(6):690-695
OBJECTIVES:
To evaluate the clinical value of CD4⁺ cell percentage (CD4⁺%) and NK cell percentage (NK%) in predicting treatment outcomes in children with aplastic anemia (AA), providing a reference for precise diagnosis and treatment.
METHODS:
This retrospective study analyzed the clinical data of AA children treated with cyclosporine A at the First Affiliated Hospital of Xinjiang Medical University from January 2019 to April 2024. The study involved 48 AA children as the observation group and 50 children undergoing medical check-ups during the same period as the control group. Lymphocyte subset data were collected from both groups to analyze differences and their relationship with treatment efficacy. Based on hematological responses, the observation group was divided into an effective group of 18 patients (HR group, including complete and partial remission) and an ineffective group of 30 patients (NHR group, including non-remission).
RESULTS:
Univariate analysis showed that NK% in the observation group was significantly lower than that in the control group (P<0.05). The observation group was followed up for 3 months. The HR group had a lower CD4⁺% than the NHR group (P=0.018) and a higher NK% than the NHR group (P=0.029). Multivariate logistic regression analysis indicated that a high CD4⁺% was a risk factor for poor treatment efficacy (OR=1.062), whereas a high NK% was a protective factor (OR=0.820). The area under the curve for the prediction of HR in pediatric AA by combining CD4⁺% and NK% was 0.812.
CONCLUSIONS
A higher CD4⁺% at diagnosis is a predictor of poor treatment response, whereas a higher NK% is associated with better outcomes.
Humans
;
Anemia, Aplastic/blood*
;
Male
;
Female
;
Killer Cells, Natural
;
Child
;
Retrospective Studies
;
Child, Preschool
;
Prognosis
;
Adolescent
;
CD4-Positive T-Lymphocytes
;
Infant
7.The Efficacy and Safety of Modified Thiotepa-Based Conditioning Followed by Autologous Stem Cell Transplantation in Primary CNS Lymphomas.
Yan LI ; Ping YANG ; Fang BAO ; Sen LI ; Lan MA ; Fei DONG ; Ji-Jun WANG ; Hong-Mei JING
Journal of Experimental Hematology 2025;33(5):1435-1442
OBJECTIVE:
To explore and evaluate the efficacy and safety of a modified thiotepa-based conditioning regimen combined with autologous hematopoietic stem cell transplantation (ASCT) for the treatment of primary central nervous system lymphoma (PCNSL).
METHODS:
In a retrospective, single center, single arm study, we collected data of 28 patients with PCNSL who underwent high-dose chemotherapy followed by autologous stem cell transplantation (HDC-ASCT) at our center from March 2021 to December 2024. The clinical characteristics of the patients, the conditioning regimen details, treatment-related toxicities and adverse reactions, post-transplant disease remission status, and survival outcomes were analyzed.
RESULTS:
A total of 28 patients were included. Among them, 19 patients received ASCT as first-line consolidation therapy in complete response (CR) or partial response (PR) status, and 9 patients with relapsed/refractory disease underwent salvage ASCT. The median time to neutrophil engraftment was 9 days (range: 5-11 days), and the median time to platelet engraftment was 10 days (range: 6-13 days). All patients achieved CR at the initial efficacy evaluation post-ASCT. The main complications during the transplantation period were febrile neutropenia (26 cases) and grade 3 diarrhea (9 cases). No transplantation-related mortality occurred. Post-ASCT, 19 patients received maintenance therapy, which was demonstrated to be safe and effective. Three patients relapse, and one patient died. The median progression-free survival (PFS) and overall survival (OS) of patients were not reached. The estimated 1-year and 2-year cumulative PFS rates were 88.4% and 66.3%, respectively, while the 1-year and 2-year OS rates were both 94.1%.
CONCLUSION
The modified thiotepa-based conditioning regimen combined with ASCT is safe and effective for the treatment of PCNSL.
Humans
;
Thiotepa/therapeutic use*
;
Retrospective Studies
;
Transplantation, Autologous
;
Transplantation Conditioning/methods*
;
Central Nervous System Neoplasms/therapy*
;
Hematopoietic Stem Cell Transplantation
;
Female
;
Male
;
Middle Aged
;
Adult
;
Lymphoma/therapy*
;
Treatment Outcome
;
Aged
8.Validation and Reproducibility of an Iodine-specific Food Frequency Questionnaire for Evaluating Dietary Iodine Intake in the Elderly Population of Gansu Province, China.
Qi JIN ; Tao WANG ; Mei Na JI ; Ji Zun WANG ; Xing MA ; Xin Yi WANG ; Jia Qi WANG ; He Xi ZHANG ; Yan Ling WANG ; Wen Xing GUO ; Wan Qi ZHANG
Biomedical and Environmental Sciences 2025;38(9):1168-1172
9.Analysis of Serum Metabolic Biomarkers in Adult Patients with Kashin-Beck Disease and Degenerative Osteoarthritis in Qinghai Province.
Jia le XU ; Qiang LI ; Chuan LU ; Xin ZHOU ; Yan Mei ZHAO ; Jian Ling WANG ; Ji Quan LI ; Li MA ; Zhi Jun ZHAO ; Ke Wen LI
Biomedical and Environmental Sciences 2025;38(9):1173-1177
10.Role of mitochondrial biogenesis in rat model of coal workers' pneumoconiosis based on PGC-1α-NRF1-TFAM signaling pathway
Mei ZHANG ; Xiaoqiang HAN ; Lulu LIU ; Yan WANG ; Xin MA ; Yu XIONG ; Huifang YANG ; Na ZHANG
Journal of Environmental and Occupational Medicine 2025;42(12):1429-1437
Background Mitochondrial biogenesis is pivotal in coal workers' pneumoconiosis fibrosis, yet the role of the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)-nuclear respiratory factor 1 (NRF1)-mitochondrial transcription factor A (TFAM) pathway inmitochondrial biogenesis remains elusive, warranting further investigation. Objective To elucidate the role of the PGC-1α-NRF1-TFAM pathway in mitochondrial biogenesis in a rat coal workers' pneumoconiosis model through in vivo and in vitro experiments. Methods (1)n vivo: twelve SPF male SD rats (200-220 g) were randomized into a control group and a coal dust group (n=6 per group). After acclimatization, the coal dust group received 1 mL 50 mg·mL−1 coal dust suspension via intratracheal instillation; the controls received saline. Lung tissues were harvested after two months for histopathology [HE, Masson, and transmission electron microscopy (TEM) ], protein and mRNA analysis, and mitochondrial DNA (mtDNA) quantification by quantitative real-time polymerase chain reaction (qPCR). (2) In vitro: rat lung type II epithelial cells (RLE-6TN) cells were exposed to coal dust (50, 100, 200, and 400 mg·L−1, 24 h). CCK-8 assay determined optimal doses. Ultrastructural changes were analyzed by TEM. Cells were transfected with OE-PGC-1α (PGC-1α overexpression) or shRNA-PGC-1α plasmids (PGC-1α knockdown), and the transfection efficiency was determined by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). The expression levels of alpah-smooth muscle actin (α-SMA), citrate synthase (CS), PGC-1α, NRF1, TFAM, and fibronectin (Fn) proteins and their corresponding mRNA were detected using Western blot and RT-qPCR, respectively. The relative content of mtDNA was determined by qPCR. Results In vivo: the control group lung samples exhibited soft, pink parenchyma, while the coal dust-exposed lungs showed blackened surfaces with soft texture. The histopathological evaluation revealed intact alveolar walls in the controls versus structural destruction, micro-nodules, and fibrotic areas in the coal dust group. After Masson staining, coal dust deposits were found surrounded by blue collagen fibers in the exposed lungs, but absent in the controls. The coal dust group displayed significant upregulation of fibrotic marker α-SMA and downregulation of mitochondrial biogenesis markers (CS, PGC-1α, NRF1, TFAM) and mtDNA compared to the controls (P<0.05). In vitro: coal dust exposure reduced cell density and induced morphological alterations. TEM revealed evenly distributed normal mitochondria in controls versus mitochondrial swelling, disrupted cristae, and reduced numbers in exposed cells. The mitochondrial biogenesis markers were elevated in the coal dust + OE-PGC-1α group compared to the coal dust + OE-NC group (P<0.05); in contrast, they were decreased in the coal dust + shRNA-PGC-1α group compared to the coal dust + shRNA-NC group (P<0.05). Compared to the control group, the expression levels of the fibrosis marker α-SMA mRNA and protein were increased in the coal dust group (P<0.05). Overexpression of PGC-1α reduced α-SMA expression, while downregulation of PGC-1α increased its expression (P<0.05). Conclusion Coal dust exposure induces mitochondrial dysfunction and pulmonary fibrosis in vivo and in vitro via the PGC-1α-NRF1-TFAM pathway dysregulation. Targeting this pathway may mitigate coal dust-induced fibrosis by restoring mitochondrial biogenesis.

Result Analysis
Print
Save
E-mail