1.Epidemiology and management patterns of chronic thromboembolic pulmonary hypertension in China.
Wanmu XIE ; Yongpei YU ; Qiang HUANG ; Xiaoyan YAN ; Yuanhua YANG ; Changming XIONG ; Zhihong LIU ; Jun WAN ; Sugang GONG ; Lan WANG ; Cheng HONG ; Chenghong LI ; Jean-François RICHARD ; Yanhua WU ; Jun ZOU ; Chen YAO ; Zhenguo ZHAI
Chinese Medical Journal 2025;138(8):1000-1002
2.Effect and Safety of a New Conditioning Regimen with Chidamide and BEAM for Autologous Hematopoietic Stem Cell Transplantation in Lymphoma.
Sen LI ; Jin-Jie GAO ; Yan LI ; Fei DONG ; Qi-Hui LI ; Wei ZHAO ; Wei WAN ; Ping YANG ; Ji-Jun WANG ; Hong-Mei JING
Journal of Experimental Hematology 2025;33(1):121-126
OBJECTIVE:
To assess the efficacy and safety of a new conditioning regimen with chidamide and BEAM for autologous hematopoietic stem cell transplantation (AHSCT) in patients with lymphoma.
METHODS:
Medical records and further follow-up data from 85 patients with lymphoma from May 2015 to September 2020 in our hospital were retrospectively collected and analyzed.
RESULTS:
Among 85 patients, 52 cases accepted BEAM regimen and 33 cases accepted CBEAM followed by AHSCT. In CBEAM group, 18 patients (54.5%) received AHSCT as salvage therapy, while only 26.9% (14 cases) for salvage in BEAM group ( P < 0.01). CBEAM conditioning resulted in shorter neutrophil engraftment of 2 days, while no significant difference was found in platelet engraftment. Although the incidence of liver impairment was higher in CBEAM group (12.1%), the grade of impairment was only Ⅰ to Ⅱ. The two conditioning regimens both achieved good complete remission rate of over 90%, and no transplant-related death occurred. The median follow-up time in the CBEAM group was 18(12, 22) months, and 39(20, 59) months in the BEAM group. There were no significantly differences in 2-year progression-free survival (PFS) and overall survival (OS) rate between the two groups (P >0.05). In patients with refractory or relapsed non-Hodgkin lymphoma, the 2-year PFS rate after transplantation in BEAM group and CBEAM group was 74.1% and 92.9%, respectively (P >0.05), indicating that chidamide may have certain advantages in prolonging PFS.
CONCLUSION
CBEAM conditioning regimen has a good efficacy and safety in lymphoma patients before AHSCT, especially in refractory and relapsed non-Hodgkin lymphoma patients, suggesting that it could serve as an alternative conditioning regimen prior to AHSCT for lymphoma.
Humans
;
Hematopoietic Stem Cell Transplantation
;
Transplantation Conditioning/methods*
;
Transplantation, Autologous
;
Retrospective Studies
;
Aminopyridines/therapeutic use*
;
Lymphoma/therapy*
;
Benzamides/therapeutic use*
;
Antineoplastic Combined Chemotherapy Protocols/therapeutic use*
;
Male
;
Female
;
Cytarabine/therapeutic use*
;
Melphalan/therapeutic use*
;
Adult
;
Middle Aged
;
Podophyllotoxin/therapeutic use*
;
Carmustine
;
Etoposide
3.Graph Neural Networks and Multimodal DTI Features for Schizophrenia Classification: Insights from Brain Network Analysis and Gene Expression.
Jingjing GAO ; Heping TANG ; Zhengning WANG ; Yanling LI ; Na LUO ; Ming SONG ; Sangma XIE ; Weiyang SHI ; Hao YAN ; Lin LU ; Jun YAN ; Peng LI ; Yuqing SONG ; Jun CHEN ; Yunchun CHEN ; Huaning WANG ; Wenming LIU ; Zhigang LI ; Hua GUO ; Ping WAN ; Luxian LV ; Yongfeng YANG ; Huiling WANG ; Hongxing ZHANG ; Huawang WU ; Yuping NING ; Dai ZHANG ; Tianzi JIANG
Neuroscience Bulletin 2025;41(6):933-950
Schizophrenia (SZ) stands as a severe psychiatric disorder. This study applied diffusion tensor imaging (DTI) data in conjunction with graph neural networks to distinguish SZ patients from normal controls (NCs) and showcases the superior performance of a graph neural network integrating combined fractional anisotropy and fiber number brain network features, achieving an accuracy of 73.79% in distinguishing SZ patients from NCs. Beyond mere discrimination, our study delved deeper into the advantages of utilizing white matter brain network features for identifying SZ patients through interpretable model analysis and gene expression analysis. These analyses uncovered intricate interrelationships between brain imaging markers and genetic biomarkers, providing novel insights into the neuropathological basis of SZ. In summary, our findings underscore the potential of graph neural networks applied to multimodal DTI data for enhancing SZ detection through an integrated analysis of neuroimaging and genetic features.
Humans
;
Schizophrenia/pathology*
;
Diffusion Tensor Imaging/methods*
;
Male
;
Female
;
Adult
;
Brain/metabolism*
;
Young Adult
;
Middle Aged
;
White Matter/pathology*
;
Gene Expression
;
Nerve Net/diagnostic imaging*
;
Graph Neural Networks
4.Icariin ameliorates viral myocarditis by inhibiting TLR4-mediated ferroptosis
Wei Luo ; Yi Lu ; Jun-Hua Deng ; Peng Liu ; Yan Huang ; Wan-Xi Liu ; Chun-Li Huang
Asian Pacific Journal of Tropical Biomedicine 2024;14(3):106-114
Objective: To explore the mechanism by which icariin alleviates viral myocarditis. Methods: CVB3-induced cardiomyocytes were used as an in vitro model of viral myocarditis to assess the effects of icariin treatment on cell viability, inflammation, and apoptosis. Moreover, the effects of icariin on ferroptosis and TLR4 signaling were assessed. After AC16 cells were transfected with TLR4 overexpression plasmids, the role of TLR4 in mediating the regulatory effect of icariin in viral myocarditis was investigated. Results: Icariin significantly elevated cell viability and reduced inflammatory factors TNF-α, IL-1β, IL-6, and IL-18. Flow cytometry revealed that icariin decreased apoptosis rate, and the protein expression of Bax and cleaved caspase 3 and 9 in CVB3-induced cardiomyocytes. Additionally, it suppressed ferroptosis including lipid peroxidation and ferrous ion, as well as the TLR4 signaling. However, TLR4 overexpression abrogated the modulatory effects of icariin. Conclusions: Icariin mitigates CVB3-induced myocardial injury by inhibiting TLR4-mediated ferroptosis. Further animal study is needed to verify its efficacy.
5.Research progress of cerebral organoid technology and its application in stroke treatment
Kexin SUN ; Yuqian XIAO ; Jun WAN ; Shuying CHEN ; Limin CHEN ; Yan WANG ; Yanjie BAI
Tianjin Medical Journal 2024;52(1):38-43
Cerebral organoids are three-dimensional nerve cultures induced by embryonic stem cells(ESCs)or induced pluripotent stem cells(iPSCs)that mimic the structure and function of human brain.With the continuous optimization of cerebral organoid culture technology and the combination with emerging technologies such as organ transplantation,gene editing and organoids-on-chip,complex brain tissue structures such as functional vascular structures and neural circuits have been produced,which provides new methods and ideas for studying human brain development and diseases.This article reviews the latest advances in brain organoid technology,describes its application in neurological diseases and advances in stroke modeling and transplantation treatment.
6.Research progress of RNA m6A methylation in post-stroke cognitive impairment
Yuqian XIAO ; Kexin SUN ; Jun WAN ; Shuying CHEN ; Limin CHEN ; Yan WANG ; Yanjie BAI
Tianjin Medical Journal 2024;52(3):331-336
Post-stroke cognitive impairment(PSCI)is mainly manifested as learning and memory disorders.Highly enriched RNA m6A methylation modification in mammalian brain is involved in glial cell-mediated neuroinflammation.Given that neuroinflammation is the main mechanism for neural damage and spatial and memory impairment of PSCI,it is speculated that RNA m6A methylation modification can regulate the inflammatory response of glial cells after stroke to improve PSCI.This review summarizes and analyzes the role of RNA m6A methylation modification in the development of PSCI and analyzes its detailed mechanism of regulating glial cell-mediated inflammation,which will provide reference for researchers in this field.
7.Mechanism of action and related signaling pathways of long non-coding RNAs in neuroimmuno-inflammatory response after ischemic stroke
Jun WAN ; Yanjie BAI ; Yan WANG ; Shuying CHEN ; Limin CHEN ; Yuqian XIAO ; Kexin SUN
Chinese Journal of Tissue Engineering Research 2024;28(20):3265-3271
BACKGROUND:Long non-coding RNAs(lncRNAs),as important regulators of the inflammatory response,are involved in the immune-inflammation-brain crosstalk mechanism after ischemic stroke and have the potential to become a therapeutic agent for neurological dysfunction after ischemic stroke. OBJECTIVE:To analyze and summarize the molecular mechanism of lncRNA acting on glial cells involved in the neuroimmuno-inflammatory cascade response after ischemic stroke and the associated signaling pathways,pointing out that lncRNAs have the potential to regulate inflammation after ischemic stroke. METHODS:PubMed was searched using the search terms of"ischemic stroke,long non-coding RNA,neuroinflammation,immune function,signal pathway,microglia,astrocytes,oligodendrocyte,mechanism,"and 63 relevant documents were finally included for review. RESULTS AND CONCLUSION:In the early stage of ischemic stroke,the death of nerve cells due to ischemia and hypoxia activates the innate immune response of the brain,promoting the secretion of inflammatory factors and inducing blood-brain barrier damage and a series of inflammatory cascades responses.As an important pathogenesis factor in ischemic stroke,the neuroimmuno-inflammatory cascade has been proved to seriously affect the prognosis of patients with ischemic stroke,and it needs to be suppressed promptly in the early stage.Neuroinflammation after ischemic stroke usually induces abnormal expression of a large number of lncRNAs that mediate a series of neuro-immune-inflammatory crosstalk mechanisms through regulating the polarization of microglia,astrocytes and oligodendrocytes to exert post-stroke neuroprotective effects.LncRNAs,as important regulatory factors of the inflammatory response,inhibit the neuroimmuno-inflammatory cascade response after ischemic stroke through regulating nuclear factor-κB,lncRNA-miRNA-mRNA axis,Rho-ROCK,MAPK,AKT,ERK and other signaling pathways to effectively improve neurological impairment after ischemic stroke.Most of experimental studies on the interaction between lncRNAs and ischemic stroke are based on a middle cerebral artery occlusion model or a cerebral ischemia-reperfusion injury model,but no clinical trials have been conducted.Therefore,it remains to be further explored about whether lncRNAs can be safely applied in clinical practice.At present,there are many therapeutic drugs for the treatment of ischemic stroke,but there are relatively few studies on the application of lncRNAs,exosomes and other transplantation technologies for the treatment of ischemic stroke using tissue engineering technology,which need to be further explored.lncRNA has become an important target for the treatment of ischemic stroke with its relative stability and high specificity.In future studies,more types of inflammatory lncRNAs that function under ischemic-hypoxia conditions should continue to be explored,in order to provide new research directions for the treatment of neuroinflammation after ischemic stroke.
8.Advances in programmed cell death in post-stroke cognitive impairment
Kexin SUN ; Yuqian XIAO ; Jun WAN ; Shuying CHEN ; Limin CHEN ; Yan WANG ; Yanjie BAI
Chinese Journal of Comparative Medicine 2024;34(3):161-171
Post-stroke cognitive impairment(PSCI)is a common complication after stroke,which significantly affects quality of life.However,the pathogenesis has not been fully explained.Increasing evidence has shown that the mechanism of programmed cell death(PCD)is related to PSCI,including apoptosis,necroptosis,pyroptosis,PANoptosis,parthanatos,and ferroptosis.Therefore,it is crucial to clearly understand the various mechanisms of PCD and their relationship with PSCI,and to elucidate the role of PCD in PSCI pathogenesis.The article reviews six PCD pathways related to PSCI,summarizes their mechanisms of action in PSCI,and elucidates the possible crosstalk among pathways to provide a basis for clinical targeting of regulatory factors in the PCD pathway for PSCI treatment.
9.Associations between the diet-related inflammation indices and digestive system cancer:a narrative review of epidemiological studies
Jing-Yu TAN ; Yan ZHANG ; Jun CHEN ; Dan-Ni YANG ; Yi-Xin ZOU ; Wan-Shui YANG ; Yong-Bing XIANG
Fudan University Journal of Medical Sciences 2024;51(3):404-414
The inflammatory effect of dietary is strongly related to the development of cancer,therefore,the diet-related inflammatory index was developed as a methodological tool to investigate the relationship between dietary,inflammation and tumors.In this paper,we summarized the results on diet-related inflammatory indices and common cancers of the digestive system based on relevant cancer epidemiological studies.The available epidemiological evidence suggests that pro-inflammatory diet is associated with an increased risk of gastrointestinal malignancies,with the strongest association with colorectal cancer,followed by esophageal and gastric cancers,and then pancreatic cancer,and the least evidence of studies with liver cancer.Among these studies,the level of evidence for esophageal cancer is lower than colorectal cancer,the study of gastric cancer has gender differences and problems in adjusting for confounders,and the study of pancreatic cancer has heterogeneous results.In view of the current research progress and deficiencies,prospective studies or population-based cohort studies,as well as strengthening nutritional epidemiological studies related to common tumors such as liver cancer could be considered in the future.This review is expecting to provide basic information and scientific basis for strengthening the related healthy eating behavior promotion in the prevention and control of digestive system tumors.
10.Genome-wide methylation profiling identified methylated KCNA3 and OTOP2 as promising diagnostic markers for esophageal squamous cell carcinoma
Yan BIAN ; Ye GAO ; Chaojing LU ; Bo TIAN ; Lei XIN ; Han LIN ; Yanhui ZHANG ; Xun ZHANG ; Siwei ZHOU ; Kangkang WAN ; Jun ZHOU ; Zhaoshen LI ; Hezhong CHEN ; Luowei WANG
Chinese Medical Journal 2024;137(14):1724-1735
Background::Early detection of esophageal squamous cell carcinoma (ESCC) can considerably improve the prognosis of patients. Aberrant cell-free DNA (cfDNA) methylation signatures are a promising tool for detecting ESCC. However, available markers based on cell-free DNA methylation are still inadequate. This study aimed to identify ESCC-specific cfDNA methylation markers and evaluate the diagnostic performance in the early detection of ESCC.Methods::We performed whole-genome bisulfite sequencing (WGBS) for 24 ESCC tissues and their normal adjacent tissues. Based on the WGBS data, we identified 21,469,837 eligible CpG sites (CpGs). By integrating several methylation datasets, we identified several promising ESCC-specific cell-free DNA methylation markers. Finally, we developed a dual-marker panel based on methylated KCNA3 and OTOP2, and then, we evaluated its performance in our training and validation cohorts. Results::The ESCC diagnostic model constructed based on KCNA3 and OTOP2 had an AUC of 0.91 [95% CI: 0.85–0.95], and an optimal sensitivity and specificity of 84.91% and 94.32%, respectively, in the training cohort. In the independent validation cohort, the AUC was 0.88 [95% CI: 0.83–0.92], along with an optimal sensitivity of 81.5% and specificity of 92.9%. The model sensitivity for stage I–II ESCC was 78.4%, which was slightly lower than the sensitivity of the model (85.7%) for stage III–IV ESCC. Conclusion::The dual-target panel based on cfDNA showed excellent performance for detecting ESCC and might be an alternative strategy for screening ESCC.


Result Analysis
Print
Save
E-mail