1.Principles, technical specifications, and clinical application of lung watershed topography map 2.0: A thoracic surgery expert consensus (2024 version)
Wenzhao ZHONG ; Fan YANG ; Jian HU ; Fengwei TAN ; Xuening YANG ; Qiang PU ; Wei JIANG ; Deping ZHAO ; Hecheng LI ; Xiaolong YAN ; Lijie TAN ; Junqiang FAN ; Guibin QIAO ; Qiang NIE ; Mingqiang KANG ; Weibing WU ; Hao ZHANG ; Zhigang LI ; Zihao CHEN ; Shugeng GAO ; Yilong WU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):141-152
With the widespread adoption of low-dose CT screening and the extensive application of high-resolution CT, the detection rate of sub-centimeter lung nodules has significantly increased. How to scientifically manage these nodules while avoiding overtreatment and diagnostic delays has become an important clinical issue. Among them, lung nodules with a consolidation tumor ratio less than 0.25, dominated by ground-glass shadows, are particularly worthy of attention. The therapeutic challenge for this group is how to achieve precise and complete resection of nodules during surgery while maximizing the preservation of the patient's lung function. The "watershed topography map" is a new technology based on big data and artificial intelligence algorithms. This method uses Dicom data from conventional dose CT scans, combined with microscopic (22-24 levels) capillary network anatomical watershed features, to generate high-precision simulated natural segmentation planes of lung sub-segments through specific textures and forms. This technology forms fluorescent watershed boundaries on the lung surface, which highly fit the actual lung anatomical structure. By analyzing the adjacent relationship between the nodule and the watershed boundary, real-time, visually accurate positioning of the nodule can be achieved. This innovative technology provides a new solution for the intraoperative positioning and resection of lung nodules. This consensus was led by four major domestic societies, jointly with expert teams in related fields, oriented to clinical practical needs, referring to domestic and foreign guidelines and consensus, and finally formed after multiple rounds of consultation, discussion, and voting. The main content covers the theoretical basis of the "watershed topography map" technology, indications, operation procedures, surgical planning details, and postoperative evaluation standards, aiming to provide scientific guidance and exploration directions for clinical peers who are currently or plan to carry out lung nodule resection using the fluorescent microscope watershed analysis method.
2.Research progress and development trend of nanopesticides and RNA pesticides.
Heng QIAO ; Jingyi CHEN ; Qinhong JIANG ; Xiangge DU ; Jie SHEN ; Shuo YAN
Chinese Journal of Biotechnology 2025;41(10):3774-3789
The production of healthy agricultural products has increased the demand for innovative and sustainable plant protection technologies, and the rapid advancement of nanotechnology has brought revolutionary breakthroughs to traditional agriculture. Nanocarrier-based drug delivery systems can not only significantly improve the utilization efficiency of pesticides, achieving enhanced efficacy and reduced application, but also decrease the pesticide residues and environmental pollution. Additionally, they have made breakthrough progress in the stability and persistence of RNA pesticides. This review summarized the research progress on nanopesticides and RNA pesticides, focusing on the mechanisms of nanocarriers in improving pesticide bioactivity and RNA interference (RNAi) efficiency. It also systematically summarized the types of nanomaterials and their applications in pest and disease management and provided an in-depth outlook for the future development of nanopesticides and RNA pesticides, which provided technical support for the high-quality development of agriculture in the future.
Pesticides/chemistry*
;
Nanotechnology
;
Nanostructures
;
RNA
;
Agriculture/methods*
;
RNA Interference
;
Drug Delivery Systems
3.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
4.Clinical guidelines for the diagnosis and treatment of osteoporotic thoracolumbar vertebral fracture with kyphotic deformity in the elderly (version 2024)
Jian CHEN ; Qingqing LI ; Jun GU ; Zhiyi HU ; Shujie ZHAO ; Zhenfei HUANG ; Tao JIANG ; Wei ZHOU ; Xiaojian CAO ; Yongxin REN ; Weihua CAI ; Lipeng YU ; Tao SUI ; Qian WANG ; Pengyu TANG ; Mengyuan WU ; Weihu MA ; Xuhua LU ; Hongjian LIU ; Zhongmin ZHANG ; Xiaozhong ZHOU ; Baorong HE ; Kainan LI ; Tengbo YU ; Xiaodong GUO ; Yongxiang WANG ; Yong HAI ; Jiangang SHI ; Baoshan XU ; Weishi LI ; Jinglong YAN ; Guangzhi NING ; Yongfei GUO ; Zhijun QIAO ; Feng ZHANG ; Fubing WANG ; Fuyang CHEN ; Yan JIA ; Xiaohua ZHOU ; Yuhui PENG ; Jin FAN ; Guoyong YIN
Chinese Journal of Trauma 2024;40(11):961-973
The incidence of osteoporotic thoracolumbar vertebral fracture (OTLVF) in the elderly is gradually increasing. The kyphotic deformity caused by various factors has become an important characteristic of OTLVF and has received increasing attention. Its clinical manifestations include pain, delayed nerve damage, sagittal imbalance, etc. Currently, the definition and diagnosis of OTLVF with kyphotic deformity in the elderly are still unclear. Although there are many treatment options, they are controversial. Existing guidelines or consensuses pay little attention to this type of fracture with kyphotic deformity. To this end, the Lumbar Education Working Group of the Spine Branch of the Chinese Medicine Education Association and Editorial Committee of Chinese Journal of Trauma organized the experts in the relevant fields to jointly develop Clinical guidelines for the diagnosis and treatment of osteoporotic thoracolumbar vertebral fractures with kyphotic deformity in the elderly ( version 2024), based on evidence-based medical advancements and the principles of scientificity, practicality, and advanced nature, which provided 18 recommendations to standardize the clinical diagnosis and treatment.
5.Clinical Study on Combined Double-balloon Enteroscopy in Patients With Suspected Small Bowel Bleeding
Shuang ZHANG ; Pengyue ZHANG ; Yan FENG ; Yong JIANG ; Yalei WANG ; Qiao MEI ; Naizhong HU
Chinese Journal of Gastroenterology 2024;29(1):15-19
Background:Combined double-balloon enteroscopy(DBE)plays an important role in the diagnosis and treatment of patients with suspected small bowel bleeding(SSBB).Aims:To investigate the performance of combined DBE in patients with SSBB and their clinical features.Methods:A total of 94 patients with SSBB underwent combined DBE from June 2018 to April 2023 at the Third People's Hospital of Bengbu and the First Affiliated Hospital of Anhui Medical University were enrolled,and the clinical features were analyzed.Results:Fifty-four SSBB patients completed the combined DBE,and the combination rate was 57.4%.Ten patients(10.6%)stopped combined DBE due to discovery of bleeding lesions.Five patients(5.3%)stopped combined DBE due to intestinal stenosis.Twenty-five patients(26.5%)stopped combined DBE due to difficulty in insertion.Combined DBE rate in SSBB patients was correlated with the combination time and the number of previous DBE for endoscopists(P<0.05),but not the gender,age,bleeding manifestations,tobacco smoking and alcohol drinking,nutritional risk,abdominal operation history,perianal lesions,autoimmune diseases,preoperative anemia,preoperative albumin level,and enteroscopy approach(P>0.05).ROC curve showed that when the cut-off value of first insertion depth was 385 cm,the sensitivity and specificity for successful combined DBE in SSBB patients were 72.2%and 77.5%,respectively,and the area under ROC curve was 0.800(95%CI:0.705-0.875,P<0.001).Conclusions:The combined DBE rate in SSBB patients is correlated with the combination time and the number of previous DBE for endoscopists.80%of the SSBB patients are expected to complete the combined DBE when the first insertion depth is greater than 385 cm.
6.Development of biological safety protection third-level laboratory based on folding-modular shelters
Si-Qing ZHAO ; Jian-Qiao XIA ; Zhong-Jie SUN ; Kang OUYANG ; Xiao-Jun JIN ; Kang-Li ZHOU ; Wei XIE ; Hai-Yang LI ; Da-Peng JIANG ; Yan-Yan GAO ; Bei SUN
Chinese Medical Equipment Journal 2024;45(3):41-46
Objective To develop a biological safety protection third-level(BSL-3)laboratory based on folding-modular shelters to solve the problems of the existing laboratories in space and function expansion,large-scale deployment and low-cost transportation.Methods The BSL-3 laboratory was composed of a folding combined shelter module,a ventilation and purification module,a power supply and distribution module,a monitoring and communication module,a control system module and an equipment module.The folding combined shelter module used a leveling base frame as the foundation and a lightweight panel as the enclosure mechanism,and was divided into an auxiliary area and a protection protected area;the ventilation and purification module was made up of an air supply unit and an air exhaust unit,the air supply unit was integrated with a fresh-air air conditioner and the exhaust unit was equipped with a main fan,a standby fan and a bag in/bag out filter;the control system module adopted a supervision mode of decentralized control and centralized management,which executed communication with the data server as the center and Profinet protocol and MODBUS-TCP.Results The BSL-3 laboratory proved to meet the requirements of relevant standards in internal microenvironment,airflow direction,airtightness,working condition and disinfection effect.Conclusion The BSL-3 laboratory is compatible with large-scale transport and deployment and facilitates reliable and safe experiments for epidemic prevention and control and cross-regional support.[Chinese Medical Equipment Journal,2024,45(3):41-46]
7.Clinical retrospective analysis of coagulation abnormalities caused by tigecycline
Qiao LI ; Min NI ; Yuying YAN ; Lingchen JIANG ; Fuming SHEN
Chinese Journal of Pharmacoepidemiology 2024;33(10):1099-1106
Objective To investigate the effect of tigecycline on coagulation function and to provide a reference for the clinical rational use of tigecycline.Methods The data of patients treated with tigecycline in Shanghai Tenth People's Hospital between June 2019 and December 2023 by retrospective analysis.Statistical analysis was performed by collecting data on patients'basic information,routine coagulation parameters and thromboelastogram(TEG)parameters before and after the use of tigecycline.Results Activated partial thromboplastin time,prothrombin time and thrombin time were prolonged and fibrinogen levels were decreased with the use of tigecycline in 41 patients,the differences were statistically significant(P<0.05).There was no significant difference in levels of coagulation factor activation time,clot formation rate parameter,maximum angle of tangency,maximum amplitude of elastography and coagulation index after treatment with tigecycline(P>0.05).Conclusion For patients with suspected coagulation abnormalities after tigecycline administration,a comprehensive assessment of coagulation should be made by combining routine coagulation indexes with TEG.
8.Targeting Ferroptosis to Enhance Radiosensitivity of Glioblastoma
Xi-Zhong JIANG ; Shi-Yu QIAO ; Tong JIANG ; Ying YAN ; Ying XU ; Tong WU
Progress in Biochemistry and Biophysics 2024;51(6):1284-1291
Glioblastoma (GBM), one of the most common malignant tumors in the central nervous system (CNS), is characterized by diffuse and invasive growth as well as resistance to various combination therapies. GBM is the most prevalent type with the highest degree of malignancy and the worst prognosis. While current clinical treatments include surgical resection, radiotherapy, temozolomide chemotherapy, novel molecular targeted therapy, and immunotherapy, the median survival time of GBM patients is only about one year. Radiotherapy is one of the important treatment modalities for GBM, which relies on ionizing radiation to eradicate tumor cells. Approximately 60% to 70% of patients need to receive radiotherapy as postoperative radiotherapy or neoadjuvant radiotherapy during the treatment process. However, during radiotherapy, the radioresistant effect caused by DNA repair activation and cell apoptosis inhibition impedes the therapeutic effect of malignant glioblastoma.Ferroptosis was first proposed by Dr. Brent R. Stockwell in 2012. It is an iron-dependent mode of cell death induced by excessive lipid peroxidation. Although the application of ferroptosis in tumor therapy is still in the exploratory stage, it provides a completely new idea for tumor therapy as a novel form of cell death. Ferroptosis has played a significant role in the treatment of GBM. Specifically, research has revealed the key processes of ferroptosis occurrence, including intracellular iron accumulation, reactive oxygen species (ROS) generation, lipid peroxidation, and a decrease in the activity of the antioxidant system. Among them, glutathione peroxidase 4(GPX4) in the cytoplasm and mitochondria, ferroptosis suppressor protein 1 (FSP1) on the plasma membrane, and dihydroorotate dehydrogenase (DHODH) in the mitochondria constitute an antioxidant protection system against ferroptosis. In iron metabolism, nuclear receptor coactivator 4 (NCOA4) can mediate ferritin autophagy to regulate intracellular iron balance based on intracellular iron content. Heme oxygenase1 (HMOX1) catalyzes heme degradation to release iron and regulate ferroptosis. Radiation can trigger ferroptosis by generating ROS, inhibiting the signaling axis of the antioxidant system, depleting glutathione, upregulating acyl-CoA synthase long chain family member 4 (ACSL4), and inducing autophagy. Interestingly, some articles has documented that exposure to low doses of radiation (6 Gy for 24 h or 8 Gy for 4-12 h) can induce the expression of SLC7A11 and GPX4 in breast cancer and lung cancer cells, leading to radiation resistance, while radiation-induced ferroptosis occurs after 48 h. In contrast, high doses of ionizing radiation (20 Gy and 50 Gy) increase lipid peroxidation after 24 h. This suggests that radiation-induced oxidative stress is a double-edged sword that can regulate ferroptosis in both directions, and the ultimate fate of cells after radiation exposure——developing resistance and achieving homeostasis or undergoing ferroptosis——depends on the degree and duration of membrane lipid damage caused by the radiation dose. In addition, during the process of radiotherapy, methods such as inducing iron overload, damaging the antioxidant system, and disrupting mitochondrial function are used to target ferroptosis, thereby enhancing the radiosensitivity of glioblastoma. By promoting the occurrence of ferroptosis in tumor cells as a strategy to improve radiotherapy sensitivity, we can enhance the killing effect of ionizing radiation on tumor cells, thus providing more treatment options for patients with glioblastoma. In this paper, we reviewed ferroptosis and its mechanism, analyzed the molecular mechanism of radiation-induced ferroptosis, and discussed the effective strategies to regulate ferroptosis in enhancing the sensitivity of radiotherapy, with a view to providing an important reference value for improving the current status of glioblastoma treatment.
9.Identification of risk genes in Chinese nonobstructive azoospermia patients based on whole-exome sequencing.
Yu-Jun LIU ; Xin-Jie ZHUANG ; Jian-Ting AN ; Hui JIANG ; Rong LI ; Jie QIAO ; Li-Ying YAN ; Xu ZHI
Asian Journal of Andrology 2023;25(1):66-72
Nonobstructive azoospermia (NOA) is a severe condition in infertile men, and increasing numbers of causative genes have been identified during the last few decades. Although certain causative genes can explain the presence of NOA in some patients, a proportion of NOA patients remain to be addressed. This study aimed to investigate potential high-risk genes associated with spermatogenesis in idiopathic NOA patients by whole-exome sequencing. Whole-exome sequencing was performed in 46 male patients diagnosed with NOA. First, screening was performed for 119 genes known to be related to male infertility. Next, further screening was performed to determine potential high-risk causative genes for NOA by comparisons with 68 healthy male controls. Finally, risk genes with high/specific expression in the testes were selected and their expression fluctuations during spermatogenesis were graphed. The frequency of cystic fibrosis transmembrane conductance regulator (CFTR) gene pathogenic variant carriers was higher in the NOA patients compared with the healthy controls. Potential risk genes that may be causes of NOA were identified, including seven genes that were highly/specifically expressed in the testes. Four risk genes previously reported to be involved in spermatogenesis (MutS homolog 5 [MSH5], cilia- and flagella-associated protein 54 [CFAP54], MAP7 domain containing 3 [MAP7D3], and coiled-coil domain containing 33 [CCDC33]) and three novel risk genes (coiled-coil domain containing 168 [CCDC168], chromosome 16 open reading frame 96 [C16orf96], and serine protease 48 [PRSS48]) were identified to be highly or specifically expressed in the testes and significantly different in the 46 NOA patients compared with 68 healthy controls. This study on clinical NOA patients provides further evidence for the four previously reported risk genes. The present findings pave the way for further functional investigations and provide candidate risk genes for genetic diagnosis of NOA.
Humans
;
Male
;
Azoospermia/pathology*
;
East Asian People
;
Exome Sequencing
;
Mutation
;
Proteins/genetics*
10.Cerebral toxoplasmosis after hematopoietic stem cell transplantation in two children with thalassemia.
Qun Qian NING ; Wen Qiang XIE ; Qiao Chuan LI ; Lian Jin LIU ; Zhong Ming ZHANG ; Ling Ling SHI ; Mei Qing WU ; Zw Yan SHI ; Zhong Qing LI ; Yong Rong LAI ; Mu Liang JIANG ; Mei Ai LIAO ; Rong Rong LIU
Chinese Journal of Pediatrics 2023;61(3):271-273

Result Analysis
Print
Save
E-mail