1.Predicting Postoperative Progression of Ossification of the Posterior Longitudinal Ligament in the Cervical Spine Using Interpretable Radiomics Models
Siyuan QIN ; Ruomu QU ; Ke LIU ; Ruixin YAN ; Weili ZHAO ; Jun XU ; Enlong ZHANG ; Feifei ZHOU ; Ning LANG
Neurospine 2025;22(1):144-156
Objective:
This study investigates the potential of radiomics to predict postoperative progression of ossification of the posterior longitudinal ligament (OPLL) after posterior cervical spine surgery.
Methods:
This retrospective study included 473 patients diagnosed with OPLL at Peking University Third Hospital between October 2006 and September 2022. Patients underwent posterior spinal surgery and had at least 2 computed tomography (CT) examinations spaced at least 1 year apart. OPLL progression was defined as an annual growth rate exceeding 7.5%. Radiomic features were extracted from preoperative CT images of the OPLL lesions, followed by feature selection using correlation coefficient analysis and least absolute shrinkage and selection operator, and dimensionality reduction using principal component analysis. Univariable analysis identified significant clinical variables for constructing the clinical model. Logistic regression models, including the Rad-score model, clinical model, and combined model, were developed to predict OPLL progression.
Results:
Of the 473 patients, 191 (40.4%) experienced OPLL progression. On the testing set, the combined model, which incorporated the Rad-score and clinical variables (area under the receiver operating characteristic curve [AUC] = 0.751), outperformed both the radiomics-only model (AUC = 0.693) and the clinical model (AUC = 0.620). Calibration curves demonstrated good agreement between predicted probabilities and observed outcomes, and decision curve analysis confirmed the clinical utility of the combined model. SHAP (SHapley Additive exPlanations) analysis indicated that the Rad-score and age were key contributors to the model’s predictions, enhancing clinical interpretability.
Conclusion
Radiomics, combined with clinical variables, provides a valuable predictive tool for assessing the risk of postoperative progression in cervical OPLL, supporting more personalized treatment strategies. Prospective, multicenter validation is needed to confirm the utility of the model in broader clinical settings.
2.Predicting Postoperative Progression of Ossification of the Posterior Longitudinal Ligament in the Cervical Spine Using Interpretable Radiomics Models
Siyuan QIN ; Ruomu QU ; Ke LIU ; Ruixin YAN ; Weili ZHAO ; Jun XU ; Enlong ZHANG ; Feifei ZHOU ; Ning LANG
Neurospine 2025;22(1):144-156
Objective:
This study investigates the potential of radiomics to predict postoperative progression of ossification of the posterior longitudinal ligament (OPLL) after posterior cervical spine surgery.
Methods:
This retrospective study included 473 patients diagnosed with OPLL at Peking University Third Hospital between October 2006 and September 2022. Patients underwent posterior spinal surgery and had at least 2 computed tomography (CT) examinations spaced at least 1 year apart. OPLL progression was defined as an annual growth rate exceeding 7.5%. Radiomic features were extracted from preoperative CT images of the OPLL lesions, followed by feature selection using correlation coefficient analysis and least absolute shrinkage and selection operator, and dimensionality reduction using principal component analysis. Univariable analysis identified significant clinical variables for constructing the clinical model. Logistic regression models, including the Rad-score model, clinical model, and combined model, were developed to predict OPLL progression.
Results:
Of the 473 patients, 191 (40.4%) experienced OPLL progression. On the testing set, the combined model, which incorporated the Rad-score and clinical variables (area under the receiver operating characteristic curve [AUC] = 0.751), outperformed both the radiomics-only model (AUC = 0.693) and the clinical model (AUC = 0.620). Calibration curves demonstrated good agreement between predicted probabilities and observed outcomes, and decision curve analysis confirmed the clinical utility of the combined model. SHAP (SHapley Additive exPlanations) analysis indicated that the Rad-score and age were key contributors to the model’s predictions, enhancing clinical interpretability.
Conclusion
Radiomics, combined with clinical variables, provides a valuable predictive tool for assessing the risk of postoperative progression in cervical OPLL, supporting more personalized treatment strategies. Prospective, multicenter validation is needed to confirm the utility of the model in broader clinical settings.
3.Predicting Postoperative Progression of Ossification of the Posterior Longitudinal Ligament in the Cervical Spine Using Interpretable Radiomics Models
Siyuan QIN ; Ruomu QU ; Ke LIU ; Ruixin YAN ; Weili ZHAO ; Jun XU ; Enlong ZHANG ; Feifei ZHOU ; Ning LANG
Neurospine 2025;22(1):144-156
Objective:
This study investigates the potential of radiomics to predict postoperative progression of ossification of the posterior longitudinal ligament (OPLL) after posterior cervical spine surgery.
Methods:
This retrospective study included 473 patients diagnosed with OPLL at Peking University Third Hospital between October 2006 and September 2022. Patients underwent posterior spinal surgery and had at least 2 computed tomography (CT) examinations spaced at least 1 year apart. OPLL progression was defined as an annual growth rate exceeding 7.5%. Radiomic features were extracted from preoperative CT images of the OPLL lesions, followed by feature selection using correlation coefficient analysis and least absolute shrinkage and selection operator, and dimensionality reduction using principal component analysis. Univariable analysis identified significant clinical variables for constructing the clinical model. Logistic regression models, including the Rad-score model, clinical model, and combined model, were developed to predict OPLL progression.
Results:
Of the 473 patients, 191 (40.4%) experienced OPLL progression. On the testing set, the combined model, which incorporated the Rad-score and clinical variables (area under the receiver operating characteristic curve [AUC] = 0.751), outperformed both the radiomics-only model (AUC = 0.693) and the clinical model (AUC = 0.620). Calibration curves demonstrated good agreement between predicted probabilities and observed outcomes, and decision curve analysis confirmed the clinical utility of the combined model. SHAP (SHapley Additive exPlanations) analysis indicated that the Rad-score and age were key contributors to the model’s predictions, enhancing clinical interpretability.
Conclusion
Radiomics, combined with clinical variables, provides a valuable predictive tool for assessing the risk of postoperative progression in cervical OPLL, supporting more personalized treatment strategies. Prospective, multicenter validation is needed to confirm the utility of the model in broader clinical settings.
4.Predicting Postoperative Progression of Ossification of the Posterior Longitudinal Ligament in the Cervical Spine Using Interpretable Radiomics Models
Siyuan QIN ; Ruomu QU ; Ke LIU ; Ruixin YAN ; Weili ZHAO ; Jun XU ; Enlong ZHANG ; Feifei ZHOU ; Ning LANG
Neurospine 2025;22(1):144-156
Objective:
This study investigates the potential of radiomics to predict postoperative progression of ossification of the posterior longitudinal ligament (OPLL) after posterior cervical spine surgery.
Methods:
This retrospective study included 473 patients diagnosed with OPLL at Peking University Third Hospital between October 2006 and September 2022. Patients underwent posterior spinal surgery and had at least 2 computed tomography (CT) examinations spaced at least 1 year apart. OPLL progression was defined as an annual growth rate exceeding 7.5%. Radiomic features were extracted from preoperative CT images of the OPLL lesions, followed by feature selection using correlation coefficient analysis and least absolute shrinkage and selection operator, and dimensionality reduction using principal component analysis. Univariable analysis identified significant clinical variables for constructing the clinical model. Logistic regression models, including the Rad-score model, clinical model, and combined model, were developed to predict OPLL progression.
Results:
Of the 473 patients, 191 (40.4%) experienced OPLL progression. On the testing set, the combined model, which incorporated the Rad-score and clinical variables (area under the receiver operating characteristic curve [AUC] = 0.751), outperformed both the radiomics-only model (AUC = 0.693) and the clinical model (AUC = 0.620). Calibration curves demonstrated good agreement between predicted probabilities and observed outcomes, and decision curve analysis confirmed the clinical utility of the combined model. SHAP (SHapley Additive exPlanations) analysis indicated that the Rad-score and age were key contributors to the model’s predictions, enhancing clinical interpretability.
Conclusion
Radiomics, combined with clinical variables, provides a valuable predictive tool for assessing the risk of postoperative progression in cervical OPLL, supporting more personalized treatment strategies. Prospective, multicenter validation is needed to confirm the utility of the model in broader clinical settings.
5.Predicting Postoperative Progression of Ossification of the Posterior Longitudinal Ligament in the Cervical Spine Using Interpretable Radiomics Models
Siyuan QIN ; Ruomu QU ; Ke LIU ; Ruixin YAN ; Weili ZHAO ; Jun XU ; Enlong ZHANG ; Feifei ZHOU ; Ning LANG
Neurospine 2025;22(1):144-156
Objective:
This study investigates the potential of radiomics to predict postoperative progression of ossification of the posterior longitudinal ligament (OPLL) after posterior cervical spine surgery.
Methods:
This retrospective study included 473 patients diagnosed with OPLL at Peking University Third Hospital between October 2006 and September 2022. Patients underwent posterior spinal surgery and had at least 2 computed tomography (CT) examinations spaced at least 1 year apart. OPLL progression was defined as an annual growth rate exceeding 7.5%. Radiomic features were extracted from preoperative CT images of the OPLL lesions, followed by feature selection using correlation coefficient analysis and least absolute shrinkage and selection operator, and dimensionality reduction using principal component analysis. Univariable analysis identified significant clinical variables for constructing the clinical model. Logistic regression models, including the Rad-score model, clinical model, and combined model, were developed to predict OPLL progression.
Results:
Of the 473 patients, 191 (40.4%) experienced OPLL progression. On the testing set, the combined model, which incorporated the Rad-score and clinical variables (area under the receiver operating characteristic curve [AUC] = 0.751), outperformed both the radiomics-only model (AUC = 0.693) and the clinical model (AUC = 0.620). Calibration curves demonstrated good agreement between predicted probabilities and observed outcomes, and decision curve analysis confirmed the clinical utility of the combined model. SHAP (SHapley Additive exPlanations) analysis indicated that the Rad-score and age were key contributors to the model’s predictions, enhancing clinical interpretability.
Conclusion
Radiomics, combined with clinical variables, provides a valuable predictive tool for assessing the risk of postoperative progression in cervical OPLL, supporting more personalized treatment strategies. Prospective, multicenter validation is needed to confirm the utility of the model in broader clinical settings.
6.Severe COVID-19 and inactivated vaccine in diabetic patients with SARS-CoV-2 infection.
Yaling YANG ; Feng WEI ; Duoduo QU ; Xinyue XU ; Chenwei WU ; Lihua ZHOU ; Jia LIU ; Qin ZHU ; Chunhong WANG ; Weili YAN ; Xiaolong ZHAO
Chinese Medical Journal 2025;138(10):1257-1259
7.Computational pathology in precision oncology: Evolution from task-specific models to foundation models.
Yuhao WANG ; Yunjie GU ; Xueyuan ZHANG ; Baizhi WANG ; Rundong WANG ; Xiaolong LI ; Yudong LIU ; Fengmei QU ; Fei REN ; Rui YAN ; S Kevin ZHOU
Chinese Medical Journal 2025;138(22):2868-2878
With the rapid development of artificial intelligence, computational pathology has been seamlessly integrated into the entire clinical workflow, which encompasses diagnosis, treatment, prognosis, and biomarker discovery. This integration has significantly enhanced clinical accuracy and efficiency while reducing the workload for clinicians. Traditionally, research in this field has depended on the collection and labeling of large datasets for specific tasks, followed by the development of task-specific computational pathology models. However, this approach is labor intensive and does not scale efficiently for open-set identification or rare diseases. Given the diversity of clinical tasks, training individual models from scratch to address the whole spectrum of clinical tasks in the pathology workflow is impractical, which highlights the urgent need to transition from task-specific models to foundation models (FMs). In recent years, pathological FMs have proliferated. These FMs can be classified into three categories, namely, pathology image FMs, pathology image-text FMs, and pathology image-gene FMs, each of which results in distinct functionalities and application scenarios. This review provides an overview of the latest research advancements in pathological FMs, with a particular emphasis on their applications in oncology. The key challenges and opportunities presented by pathological FMs in precision oncology are also explored.
Humans
;
Precision Medicine/methods*
;
Medical Oncology/methods*
;
Artificial Intelligence
;
Neoplasms/pathology*
;
Computational Biology/methods*
8.Shexiang Tongxin Dropping Pill Improves Stable Angina Patients with Phlegm-Heat and Blood-Stasis Syndrome: A Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial.
Ying-Qiang ZHAO ; Yong-Fa XING ; Ke-Yong ZOU ; Wei-Dong JIANG ; Ting-Hai DU ; Bo CHEN ; Bao-Ping YANG ; Bai-Ming QU ; Li-Yue WANG ; Gui-Hong GONG ; Yan-Ling SUN ; Li-Qi WANG ; Gao-Feng ZHOU ; Yu-Gang DONG ; Min CHEN ; Xue-Juan ZHANG ; Tian-Lun YANG ; Min-Zhou ZHANG ; Ming-Jun ZHAO ; Yue DENG ; Chang-Jiang XIAO ; Lin WANG ; Bao-He WANG
Chinese journal of integrative medicine 2025;31(8):685-693
OBJECTIVE:
To evaluate the efficacy and safety of Shexiang Tongxin Dropping Pill (STDP) in treating stable angina patients with phlegm-heat and blood-stasis syndrome by exercise duration and metabolic equivalents.
METHODS:
This multicenter, randomized, double-blind, placebo-controlled clinical trial enrolled stable angina patients with phlegm-heat and blood-stasis syndrome from 22 hospitals. They were randomized 1:1 to STDP (35 mg/pill, 6 pills per day) or placebo for 56 days. The primary outcome was the exercise duration and metabolic equivalents (METs) assessed by the standard Bruce exercise treadmill test after 56 days of treatment. The secondary outcomes included the total angina symptom score, Chinese medicine (CM) symptom scores, Seattle Angina Questionnaire (SAQ) scores, changes in ST-T on electrocardiogram and adverse events (AEs).
RESULTS:
This trial enrolled 309 patients, including 155 and 154 in the STDP and placebo groups, respectively. STDP significantly prolonged exercise duration with an increase of 51.0 s, compared to a decrease of 12.0 s with placebo (change rate: -11.1% vs. 3.2%, P<0.01). The increase in METs was significantly greater in the STDP group than in the placebo group (change: -0.4 vs. 0.0, change rate: -5.0% vs. 0.0%, P<0.01). The improvement of total angina symptom scores (25.0% vs. 0.0%), CM symptom scores (38.7% vs. 11.8%), reduction of nitroglycerin consumption (100.0% vs. 11.3%), and all domains of SAQ, were significantly greater with STDP than placebo (all P<0.01). The changes in Q-T intervals at 28 and 56 days from baseline were similar between the two groups (both P>0.05). Twenty-five participants (16.3%) with STDP and 16 (10.5%) with placebo experienced AEs (P=0.131), with no serious AEs observed.
CONCLUSION
STDP could improve exercise tolerance in patients with stable angina and phlegm-heat and blood stasis syndrome, with a favorable safety profile. (Registration No. ChiCTR-IPR-15006020).
Humans
;
Double-Blind Method
;
Drugs, Chinese Herbal/adverse effects*
;
Male
;
Female
;
Middle Aged
;
Angina, Stable/physiopathology*
;
Aged
;
Syndrome
;
Treatment Outcome
;
Placebos
;
Tablets
9.Analysis of drug procurement model of multiple areas based on joint inventory in public hospitals
Wenjun QU ; Ruonan BAI ; Li CUI ; Yan ZHOU
Journal of Pharmaceutical Practice and Service 2024;42(7):315-318
Objective To evaluate the application effect of joint inventory management method in drug procurement and control management in multiple hospital areas.Methods Based on the joint inventory management model,four pilot drugs were selected from a certain group hospital by reasonable data processing methods for research.The effects of the model application were compared and analyzed from aspects such as inventory cost,turnover situation,and supply situation.Results After applying the joint inventory management model led by the central hospital,the inventory and amount of drugs in the three pilot hospitals were significantly reduced,with the inventory reduced by 31.93%and the average inventory amount decreased by 16.23%;The inventory turnover days had significantly decreased,with the turnover days of all three branches decreasing by more than one day;The drug shortage rate had significantly decreased,with the most significant change among the pilot drugs being the doxorubicin liposome injection,which had a 6.7%decrease in the shortage rate;The comparison results of each group of data showed statistical significance(P<0.05).Conclusion Adopting a central hospital led joint inventory management model in multiple hospital areas could significantly improve the effectiveness of drug procurement management and inventory management,which enhanced the efficiency of hospital fund utilization.
10.Exploration on Medication Law of TCM Treatment for Chronic Bronchitis Based on Real World Data
Mengmeng QU ; Ning XU ; Ling ZHOU ; Yunyan QU ; Wei WANG ; Tingting ZHANG ; Mei GAO ; Junzhu JI ; Jiawen YAN ; Haibin YU
Chinese Journal of Information on Traditional Chinese Medicine 2024;31(2):50-58
Objective To summarize the medication law of TCM in the treatment of chronic bronchitis;To provide reference for clinical medication.Methods Medical records of patients with chronic bronchitis who were hospitalized in the Respiratory Department of the First Affiliated Hospital of Henan University of Chinese Medicine from January 1,2016 to December 31,2021 were extracted based on HIS electronic medical record data.After screening,the TCM prescriptions used by patients with chronic bronchitis were input into Excel 2019 to establish a database.Based on the software Lantern 5.0,the latent structure model was learned,hidden variables and explicit variables were obtained,and the model was interpreted.SPSS Modeler 18.0 was used to establish model points with Apriori algorithm for Chinese materia medica with a frequency greater than 6%,to obtain the association rules between drugs,and to analyze the medication law of TCM in treating chronic bronchitis.Results A total of 3 410 cases were included,involving 423 kinds of Chinese materia medica,with a cumulative frequency of 82 766 times.Among them,109 kinds of Chinese materia medica with a frequency of>6 % had a cumulative frequency of 69 845 times.The top five commonly used medicines were Fritillariae Cirrhosae Bulbus,Poria,Atractyodis Macrocephalae Rhizoma,Asteris Radix et Rhizoma,Citri Reticulatae Pericarpium,mainly with medicines of reducing cough and phlegm,antiasthmatic medicine,tonifying deficiency,clearing heat,relieving superficies,promoting blood circulation and removing blood stasis.The medicinal properties were warming,cold and mild,and the main tastes were bitter,sweet and pungent,and the meridians were mainly lung,spleen,liver and stomach meridians.Through analysis of latent structure,49 hidden variables and 149 hidden classes were obtained.Combined with professional knowledge,10 comprehensive clustering models and 21 core formulas were deduced,such as Sangbaipi Decoction,Xuefu Zhuyu Decoction,Xiaoqinglong Decoction,Erchen Decoction,Shashen Maidong Decoction,Liuwei Dihuang Pills,Yinqiao Powder,Zhisou Powder,Yupingfeng Powder,Xuefu Zhuyu Decoction combined with Daotan Decoction,etc.It was concluded that the chronic bronchitis syndrome included phlegm-heat stagnation lung syndrome,qi stagnation blood stasis syndrome,cold fluid attacking lung syndrome,phlegm-dampness accumulation lung syndrome,lung qi and yin deficiency syndrome,kidney yin deficiency syndrome,wind heat attacking lung syndrome,wind cold attacking lung syndrome,lung qi and spleen deficiency syndrome,phlegm stasis interjunction syndrome.A total of 41 strong association rules were screened in the analysis of association rules,including 5 strong association rules for two and 36 strong association rules for three.The high confidence rules were Saposheikovize Radix + Angelicae Sinensis Radix →Atractyodis Macrocephalae Rhizoma,Saposheikovize Radix + Codonopsis Radix → Atractyodis Macrocephalae Rhizoma,Codonopsis Radix + Citri Reticulatae Pericarpium → Atractyodis Macrocephalae Rhizoma;the higher degree of improvement were Bupleuri Radix + Mori Cortex → Scutellariae Radix,Perillae Fructus + Belamcandae Rhizoma → Fritillariae Cirrhosae Bulbus,Armeniacae Semen Amarum + Pinelliae Rhizoma → Citri Reticulatae Pericarpium,etc.Conclusion In the treatment of chronic bronchitis,TCM is mainly used to reduce phlegm,relieve cough and asthma,and the method of promoting blood circulation and removing blood stasis is commonly used to help eliminate phlegm.In addition,TCM pays attention to the application of methods such as tonifying lung and securing the exterior,invigorating spleen and benefiting qi.

Result Analysis
Print
Save
E-mail