1.Cloning, subcellular localization and expression analysis of SmIAA7 gene from Salvia miltiorrhiza
Yu-ying HUANG ; Ying CHEN ; Bao-wei WANG ; Fan-yuan GUAN ; Yu-yan ZHENG ; Jing FAN ; Jin-ling WANG ; Xiu-hua HU ; Xiao-hui WANG
Acta Pharmaceutica Sinica 2025;60(2):514-525
The auxin/indole-3-acetic acid (Aux/IAA) gene family is an important regulator for plant growth hormone signaling, involved in plant growth, development, as well as response to environmental stresses. In the present study, we identified
2.THBS4 in Disease: Mechanisms, Biomarkers, and Therapeutic Opportunities
De-Ying HUANG ; Yan-Hong LI ; Xiu-Feng BAI ; Yi LIU
Progress in Biochemistry and Biophysics 2025;52(9):2217-2232
Thrombospondin 4 (THBS4; TSP4), a crucial component of the extracellular matrix (ECM), serves as an important regulator of tissue homeostasis and various pathophysiological processes. As a member of the evolutionarily conserved thrombospondin family, THBS4 is a multidomain adhesive glycoprotein characterized by six distinct structural domains that mediate its diverse biological functions. Through dynamic interactions with various ECM components, THBS4 plays pivotal roles in cell adhesion, proliferation, inflammation regulation, and tissue remodeling, establishing it as a key modulator of microenvironmental organization. The transcription and translation of THBS4 gene, as well as the activity of the THBS4 protein, are tightly regulated by multiple signaling pathways and extracellular cues. Positive regulators of THBS4 include transforming growth factor-β (TGF-β), interferon-γ (IFNγ), granulocyte-macrophage colony-stimulating factor (GM-CSF), bone morphogenetic proteins (BMP12/13), and other regulatory factors (such as B4GALNT1, ITGA2/ITGB1, PDGFRβ, etc.), which upregulate THBS4 at the mRNA and/or protein level. Conversely, oxidized low-density lipoprotein (OXLDL) acts as a potent negative regulator of THBS4. This intricate regulatory network ensures precise spatial and temporal control of THBS4 expression in response to diverse physiological and pathological stimuli. Functionally, THBS4 acts as a critical signaling hub, influencing multiple downstream pathways essential for cellular behavior and tissue homeostasis. The best-characterized pathways include: (1) the PI3K/AKT/mTOR axis, which THBS4 modulates through both direct and indirect interactions with integrins and growth factor receptors; (2) Wnt/β-catenin signaling, where THBS4 functions as either an activator or inhibitor depending on the cellular context; (3) the suppression of DBET/TRIM69, contributing to its diverse regulatory roles. These signaling connections position THBS4 as a master regulator of cellular responses to microenvironmental changes. Substantial evidence links aberrant THBS4 expression to a range of pathological conditions, including neoplastic diseases, cardiovascular disorders, fibrotic conditions, neurodegenerative diseases, musculoskeletal disorders, and atopic dermatitis. In cancer biology, THBS4 exhibits context-dependent roles, functioning either as a tumor suppressor or promoter depending on the tumor type and microenvironment. In the cardiovascular system, THBS4 contributes to both adaptive remodeling and maladaptive fibrotic responses. Its involvement in fibrotic diseases arises from its ability to regulate ECM deposition and turnover. The diagnostic and therapeutic potential of THBS4 is particularly promising in oncology and cardiovascular medicine. As a biomarker, THBS4 expression patterns correlate significantly with disease progression and patient outcomes. Therapeutically, targeting THBS4-mediated pathways offers novel opportunities for precision medicine approaches, including anti-fibrotic therapies, modulation of the tumor microenvironment, and enhancement of tissue repair. This comprehensive review systematically explores three key aspects of THBS4 research(1) the fundamental biological functions of THBS4 in ECM organization; (2) its mechanistic involvement in various disease pathologies; (3) its emerging potential as both a diagnostic biomarker and therapeutic target. By integrating recent insights from molecular studies, animal models, and clinical investigations, this review provides a framework for understanding the multifaceted roles of THBS4 in health and disease. The synthesis of current knowledge highlights critical research gaps and future directions for exploring THBS4-targeted interventions across multiple disease contexts. Given its unique position at the intersection of ECM biology and cellular signaling, THBS4 represents a promising frontier for the development of novel diagnostic tools and therapeutic strategies in precision medicine.
3.Exploration of pharmacodynamic substances and potential mechanisms of Huazhuo Sanjie Chubi Decoction in treatment of gouty arthritis based on UPLC-Q-Exactive Orbitrap-MS technology and network pharmacology.
Yan XIAO ; Ting ZHANG ; Ying-Jie ZHANG ; Bin HUANG ; Peng CHEN ; Xiao-Hua CHEN ; Ming-Qing HUANG ; Xue-Ting CHEN ; You-Xin SU ; Jie-Mei GUO
China Journal of Chinese Materia Medica 2025;50(2):444-488
Based on ultra-high performance liquid chromatography-quadrupole-Exactive Orbitrap mass spectrometry(UPLC-Q-Exactive Orbitrap-MS) technology and network pharmacology, this study explored the pharmacodynamic substances and potential mechanisms of Huazhuo Sanjie Chubi Decoction in the treatment of gouty arthritis(GA). UPLC-Q-Exactive Orbitrap-MS technology was used to identify the components in Huazhuo Sanjie Chubi Decoction, and the qualitative analysis of its active ingredients was carried out, with a total of 184 active ingredients identified. A total of 897 active ingredient targets were screened through the PharmMapper database, and 491 GA-related disease targets were obtained from the OMIM, GeneCards, CTD databases. After Venn analysis, 60 intersecting targets were obtained. The component target-GA target network was constructed through the Cytoscape platform, and the STRING database was used to construct a protein-protein interaction network, with 16 core targets screened. The core targets were subjected to Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses, and the component-target-pathway network was constructed. It was found that the main active ingredients of the formula for the treatment of GA were phenols, flavonoids, alkaloids, and terpenoids, and the key targets were SRC, MMP3, MMP9, REN, ALB, IGF1R, PPARG, MAPK1, HPRT1, and CASP1. Through GO analysis, it was found that the treatment of GA mainly involved biological processes such as lipid response, bacterial response, and biostimulus response. KEGG analysis showed that the pathways related to the treatment of GA included lipids and atherosclerosis, neutrophil extracellular traps(NETs), IL-17, and so on. In summary, phenols, flavonoids, alkaloids, and terpenoids may be the core pharmacodynamic substances of Huazhuo Sanjie Chubi Decoction in the treatment of GA, and the pharmacodynamic mechanism may be related to SRC, MMP3, MMP9, and other targets, as well as lipids and atherosclerosis, NETs, IL-17, and other pathways.
Drugs, Chinese Herbal/therapeutic use*
;
Network Pharmacology
;
Arthritis, Gouty/metabolism*
;
Chromatography, High Pressure Liquid/methods*
;
Humans
;
Mass Spectrometry/methods*
;
Protein Interaction Maps/drug effects*
4.Effect of Yuxuebi Tablets on mice with inflammatory pain based on GPR37-mediated inflammation resolution.
Ying LIU ; Guo-Xin ZHANG ; Xue-Min YAO ; Wen-Li WANG ; Ao-Qing HUANG ; Hai-Ping WANG ; Chun-Yan ZHU ; Na LIN
China Journal of Chinese Materia Medica 2025;50(1):178-186
In order to investigate whether the effect of Yuxuebi Tablets on the peripheral and central inflammation resolution of mice with inflammatory pain is related to their regulation of G protein-coupled receptor 37(GPR37), an inflammatory pain model was established by injecting complete Freund's adjuvant(CFA) into the paws of mice, with a sham-operated group receiving a similar volume of normal saline. The mice were assigned randomly to the sham-operated group, model group, ibuprofen group(91 mg·kg~(-1)), and low-, medium-, and high-dose groups of Yuxuebi Tablets(60, 120, and 240 mg·kg~(-1)). The drug was administered orally from days 1 to 19 after modeling. Von Frey method and the hot plate test were used to detect mechanical pain thresholds and heat hyperalgesia. The levels of interleukin-10(IL-10) and transforming growth factor-beta(TGF-β) in the spinal cord were quantified using enzyme-linked immunosorbent assay(ELISA), and the mRNA and protein expression of GPR37 in the spinal cord was measured by real-time quantitative reverse transcription PCR(qRT-PCR) and Western blot. Additionally, immunofluorescence was used to detect the expression of macrosialin antigen(CD68), mannose receptor(MRC1 or CD206), and GPR37 in dorsal root ganglia, as well as the expression of calcium-binding adapter molecule 1(IBA1), CD206, and GPR37 in the dorsal horn of the spinal cord. The results showed that compared with those of the sham-operated group, the mechanical pain thresholds and hot withdrawal latency of the model group significantly declined, and the expression of CD68 in the dorsal root ganglia and the expression of IBA1 in the dorsal horn of the spinal cord significantly increased. The expression of CD206 and GPR37 significantly decreased in the dorsal root ganglion and dorsal horn of the spinal cord, and IL-10 and TGF-β levels in the spinal cord were significantly decreased. Compared with those of the model group, the mechanical pain thresholds and hot withdrawal latency of the high-dose group of Yuxuebi Tablets significantly increased, and the expression of CD68 in the dorsal root ganglion and IBA1 in the dorsal horn of the spinal cord significantly decreased. The expression of CD206 and GPR37 in the dorsal root ganglion and dorsal horn of the spinal cord significantly increased, as well as IL-10 and TGF-β levels in the spinal cord. These findings indicated that Yuxuebi Tablets may reduce macrophage(microglial) infiltration and foster M2 macrophage polarization by enhancing GPR37 expression in the dorsal root ganglia and dorsal horn of the spinal cord of CFA-induced mice, so as to improve IL-10 and TGF-β levels, promote resolution of both peripheral and central inflammation, and play analgesic effects.
Inflammation/genetics*
;
Pain/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Animals
;
Mice
;
Freund's Adjuvant/pharmacology*
;
Ibuprofen
;
Pain Threshold/drug effects*
;
Hyperalgesia/genetics*
;
Ganglia, Spinal
;
Interleukin-10/genetics*
;
Transforming Growth Factor beta/genetics*
;
Reverse Transcriptase Polymerase Chain Reaction
;
Tablets
;
Receptors, G-Protein-Coupled
5.Scientific characterization of medicinal amber: evidence from geological and archaeological studies.
Qi LIU ; Qing-Hui LI ; Di-Ying HUANG ; Yan LI ; Pan XIAO ; Ji-Qing BAI ; Hua-Sheng PENG ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2025;50(11):2905-2914
Amber and subfossil resins are subjects of interdisciplinary research across multiple fields. However, due to their diverse origins and complex compositions, different disciplines vary in their definitions and functional interpretations. In traditional Chinese medicine(TCM), amber has been utilized as a medicinal material since ancient time, with extensive historical documentation. However, its classification, provenance, and nomenclature remain ambiguous, and authentic medicinal amber artifacts are exceedingly rare. This study employed Fourier-transform infrared spectroscopy(FTIR) to characterize amber and subfossil resins from various geological sources and commercially "medicinal amber". Additionally, historical literature and market surveys were analyzed to explore their provenance, composition, and functional attributes. The results indicate that amber and subfossil resins from different sources and with different compositions exhibit distinct fingerprint characteristics in the FTIR spectral range of 1 800-700 cm~(-1). "Medicinal amber" available in the market primarily consists of subfossil or modern resins, significantly differing in composition and structure from geological amber. This study highlights the importance of interdisciplinary research on amber identification and resource management. It is essential to establish a systematic database of amber and subfossil resin characteristics and integrate modern analytical techniques to enhance research on their composition, pharmacological mechanisms, and potential therapeutic effects, thereby promoting the standardized utilization of amber resources and advancing the modernization of TCM.
Amber/history*
;
Archaeology
;
Spectroscopy, Fourier Transform Infrared
;
Medicine, Chinese Traditional
6.Effects and mechanisms of Yuxuebi Tablets combined with ibuprofen in treating chronic musculoskeletal pain through "integrated regulation of inflammation and pain-related oxylipins".
Ao-Qing HUANG ; Wen-Li WANG ; Guo-Xin ZHANG ; Ying LIU ; Na LIN ; Chun-Yan ZHU
China Journal of Chinese Materia Medica 2025;50(13):3763-3777
This study adopted a three-dimensional "effect-dose-mechanism" evaluation system to screen the optimal regimen of Yuxuebi Tablets(YXB) combined with ibuprofen(IBU) for chronic musculoskeletal pain(CMP) intervention and elucidate its pharmacological mechanism, so as to provide a scientific basis for the clinical application of the regimen. The experiments were conducted using 8-week-old ICR mice, which were randomly divided into sham operation(sham) group, model(CFA) group, IBU group, YXB group, stasis paralysis tablets combined with ibuprofen low-dose group(IBU-L-YXB), stasis paralysis combined with ibuprofen high-dose group(IBU-H-YXB), stasis paralysis tablets combined with ibuprofen high-dose with ibuprofen discontinuation on the 10th day of administration(IBU-10-YXB), and stasis paralysis tablets combined with ibuprofen high-dose with ibuprofen halving on the 10th day of administration(IBU-1/2-YXB) group. An animal model was established using the CFA plantar injection method. On D0(the second day post-modeling), the success of model establishment was assessed, followed by continuous drug administration for 18 consecutive days from D1 to D18. During this period, mechanical pain threshold was measured by the Von Frey test; thermal hyperalgesia was detected by the hot plate test, and depression-like behavior was observed by the tail suspension test. After treatment, peripheral blood was collected from all groups for complete blood biochemical analysis, and the injected feet of the sham, CFA, IBU, YXB, IBU-YXB, and IBU-10-YXB groups were subjected to oxylipin metabolomics analysis. Immunofluorescence double staining was further performed to detect the co-expression of key oxylipin metabolic enzymes(COX2, LTA4H, and 5/12/15-LOX) and macrophage marker CD68 in the sham, CFA, IBU, and YXB-L/M/H groups. Subsequently, confirmatory analysis of positive indicators was conducted in the sham, CFA, IBU, YXB, IBU-YXB, and IBU-10-YXB groups. On D6(acute phase), mechanical pain sensitivity data showed that compared with the CFA group, only the three combination groups(IBU-YXB, IBU-10-YXB, and IBU-1/2-YXB) exhibited significantly increased paw withdrawal thresholds. On D17(chronic phase), only the IBU-10-YXB group showed a mechanical pain threshold significantly higher than all other monotherapy and combination groups. On D17, thermal pain data showed that compared with the CFA group, all groups except IBU-1/2-YXB had significantly prolonged paw withdrawal latency. On D18, tail suspension data showed that compared with the CFA group, the YXB, IBU-YXB, and IBU-10-YXB groups had significantly reduced immobility time. In summary, IBU-10-YXB stably improved the core symptoms of acute and chronic inflammatory pain. Complete blood count data showed that compared with the sham group, the CFA group had significantly increased mean platelet volume(MPV), while compared with the CFA group, the IBU-YXB and IBU-10-YXB groups had significantly reduced MPV. Moreover, the platelet distribution width(PDW) of the IBU-10-YXB group was further reduced compared with the CFA group. These data suggest that the IBU-10-YXB combination regimen has superior effects on inflammation and blood circulation improvement compared with other treatment groups. At the mechanistic level, each treatment group differentially regulated pro-inflammatory and pro-resolving oxylipin(SPM). Specifically, compared with the CFA group, the IBU and IBU-YXB groups significantly inhibited the synthesis of the prostaglandin family downstream of COX2, reducing pro-inflammatory oxylipins PGD2 and 6-keto-PGF1α but inhibiting PGE1 and PGE2, which played positive roles in peripheral circulation, vasodilation, and inflammation resolution. Compared with the CFA group, the YXB group tended to inhibit the pro-inflammatory oxylipin LTB4 downstream of LTA4H and increase SPMs such as LXA4. The IBU-10-YXB group bidirectionally regulated pro-inflammatory oxylipins and SPMs. Compared with IBU, IBU-10-YXB significantly inhibited the pro-inflammatory mediator 5-HETE. Meanwhile, IBU-10-YXB broadly upregulated SPMs, as evidenced by significant upregulation of LXA4 compared with the CFA group, significant upregulation of LXA5 compared with the IBU and IBU-YXB groups, significant upregulation of RvD1 compared with the CFA group and all other treatment groups, and significant upregulation of RvD5 compared with the sham group. Immunofluorescence double staining results were as follows: compared with the CFA group, the IBU group specifically inhibited the oxylipin metabolic enzyme COX2. In the YXB group, COX2, LTA4H, and 5/12-LOX were significantly inhibited. Within the optimal analgesic dose range, YXB's inhibitory effects on COX2 and LTA4H were dose-dependent, while its inhibitory effects on 5/12-LOX were inversely dose-dependent. The two combination groups(IBU-YXB and IBU-10-YXB) inhibited COX2 and LTA4H without significantly affecting 5-LOX, while IBU-10-YXB further significantly inhibited 12-LOX. These results suggest that the IBU-10-YXB combination regimen effectively maintains stable inhibition of COX2, LTA4H, and 12-LOX while enhancing 5-LOX expression. This combinatorial strategy effectively suppresses pro-inflammatory oxylipins and promotes SPM biosynthesis, overcoming IBU's analgesic ceiling effect and its blockade of pain resolution pathways while compensating for YXB's inability to effectively intervene in acute pain and inflammation. Therefore, it achieves more stable anti-inflammatory, analgesic, and antidepressant effects.
Animals
;
Ibuprofen/administration & dosage*
;
Mice
;
Mice, Inbred ICR
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Musculoskeletal Pain/immunology*
;
Tablets
;
Humans
;
Chronic Pain/metabolism*
;
Drug Therapy, Combination
;
Disease Models, Animal
7.Mechanism of Tougu Xiaotong Capsules regulating Malat1 and mi R-16-5p ceRNA to alleviate "cholesterol-iron" metabolism disorder in osteoarthritis chondrocytes.
Chang-Long FU ; Yan-Ming LIN ; Shu-Jie LAN ; Chao LI ; Zi-Hong ZHANG ; Yue CHEN ; Ying-Rui TONG ; Yan-Feng HUANG
China Journal of Chinese Materia Medica 2025;50(15):4363-4371
From the perspective of competitive endogenous RNA(ceRNA) constructed by metastasy-associated lung adenocarcinoma transcript 1(Malat1) and microRNA 16-5p(miR-16-5p), the improvement mechanism of Tonggu Xiaotong Capsules(TGXTC) on the imbalance and disorder of "cholesterol-iron" metabolism in chondrocytes of osteoarthritis(OA) was explored. In vivo experiments, 60 8-week-old C57BL/6 mice were acclimatized and fed for 1 week and then randomly divided into two groups: blank group(12 mice) and modeling group(48 mice). The animals in modeling group were anesthetized by 5% isoflurane inhalation, which was followed by the construction of OA model. They were then randomly divided into model group, TGXTC group, Malat1 overexpression group, and TGXTC+Malat1 overexpression(TGXTC+Malat1-OE) group, with 12 mice in each group. The structural changes of mouse cartilage tissues were observed by Masson staining after the intervention in each group. RT-PCR was employed to detect the mRNA levels of Malat1 and miR-16-5p in cartilage tissues. Western blot was used to analyze the protein expression of ATP-binding cassette transporter A1(ABCA1), sterol regulatory element-binding protein(SREBP), cytochrome P450 family 7 subfamily B member 1(CYP7B1), CCAAT/enhancer-binding protein homologous protein(CHOP), acyl-CoA synthetase long-chain family member 4(ACSL4), and glutathione peroxidase 4(GPX4) in cartilage tissues. In vitro experiments, mouse chondrocytes were induced by thapsigargin(TG), and the combination of Malat1 and miR-16-5p was detected by double luciferase assay. The fluorescence intensity of Malat1 in chondrocytes was determined by fluorescence in situ hybridization. The miR-16-5p inhibitory chondrocyte model was constructed. RT-PCR was used to analyze the levels of Malat1 and miR-16-5p in chondrocytes under the inhibition of miR-16-5p. Western blot was adopted to analyze the regulation of TG-induced chondrocyte proteins ABCA1, SREBP, CYP7B1, CHOP, ACSL4, and GPX4 by TGXTC under the inhibition of miR-16-5p. The results of in vivo experiments showed that,(1) compared with model group, TGXTC group exhibited a relatively complete cartilage layer structure. Compared with Malat1-OE group, TGXTC+Malat1-OE group showed alleviated cartilage surface damage.(2) Compared with model group, TGXTC group had a significantly decreased Malat1 mRNA level and an increased miR-16-5p mRNA level in mouse cartilage tissues(P<0.01).(3) Compared with the model group, the protein levels of ABCA1 and GPX4 in the cartilage tissue of mice in the TGXTC group increased, while the protein levels of SREBP, CYP7B1, CHOP and ACSL4 decreased(P<0.01). The results of in vitro experiments show that,(1) dual-luciferase was used to evaluate that miR-16-5p has a targeting effect on the Malat1 gene.(2)Compared with TG+miR-16-5p inhibition group, TG+miR-16-5p inhibition+TGXTC group had an increased mRNA level of miR-16-5p and an decreased mRNA level of Malat1(P<0.01).(3) Compared with TG+miR-16-5p inhibition group, TG+miR-16-5p inhibition+TGXTC group exhibited increased expression of ABCA1 and GPX4 proteins and decreased expression of SREBP, CYP7B1, CHOP, and ACSL4 proteins(P<0.01). The reasults showed that TGXTC can regulate the ceRNA of Malat1 and miR-16-5p to alleviate the "cholesterol-iron" metabolism disorder of osteoarthritis chondrocytes.
Animals
;
MicroRNAs/metabolism*
;
RNA, Long Noncoding/metabolism*
;
Chondrocytes/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Mice, Inbred C57BL
;
Mice
;
Osteoarthritis/drug therapy*
;
Iron/metabolism*
;
Male
;
Cholesterol/metabolism*
;
Humans
;
Capsules
;
RNA, Competitive Endogenous
8.A preliminary study on the vertical traction weight of cervical kyphosis treated by bidirectional cervical traction.
Hai-Lian CHEN ; Yu-Ming ZHANG ; Wen-Jie ZHANG ; Yan-Ying HUANG ; Yong ZHANG
China Journal of Orthopaedics and Traumatology 2025;38(8):822-827
OBJECTIVE:
To explore the optimal vertical traction weight, clinical efficacy, and safety of bidirectional cervical traction in the treatment of cervical kyphosis.
METHODS:
A total of 130 patients with neck pain and cervical kyphosis confirmed by cervical DR who visited the hospital from April 2023 to April 2024 were enrolled. They were divided into 4 groups according to the vertical traction weight accounting for 5%, 10%, 15%, and 20% of their body weight, respectively. The 5% body weight traction group included 33 cases (13 males and 20 females) with an average age of (34.00±10.58) years old;the 10% body weight traction group included 35 cases (17 males and 18 females) with an average age of (32.23±8.39) years old;the 15% body weight traction group included 32 cases (14 males and 18 females) with an average age of (33.88±10.09) years old;the 20% body weight traction group included 30 cases (11 males and 19 females) with an average age of (36.20±9.13) years old. Each group received treatment for 2 weeks. The visual analogue scale (VAS) score, neck disability index (NDI), and C2-C7 Cobb angle on cervical lateral X-ray films before and after treatment were recorded to evaluate the clinical efficacy of the 4 groups.
RESULTS:
When the traction weight was 10% and 15% of body weight, the pain VAS and NDI were significantly improved, and the C2-C7 Cobb angle increased, with statistically significant differences (P<0.05), and no adverse reactions occurred. However, in the 5% body weight group, the above indicators showed no significant changes, with no statistically significant differences (P>0.05). In the 20% body weight group, some patients could not tolerate the treatment, and adverse reactions such as dizziness, nausea, and aggravated neck pain occurred.
CONCLUSION
The optimal vertical traction weight of bidirectional cervical traction for cervical kyphosis is 10%-15% of body weight, which can effectively improve neck pain and cervical function, increase the C2-C7 Cobb angle of the cervical spine, with high safety, and is worthy of promotion and application.
Humans
;
Male
;
Female
;
Traction/methods*
;
Kyphosis/physiopathology*
;
Adult
;
Cervical Vertebrae/physiopathology*
;
Middle Aged
;
Neck Pain
;
Young Adult
9.Prediction of testicular histology in azoospermia patients through deep learning-enabled two-dimensional grayscale ultrasound.
Jia-Ying HU ; Zhen-Zhe LIN ; Li DING ; Zhi-Xing ZHANG ; Wan-Ling HUANG ; Sha-Sha HUANG ; Bin LI ; Xiao-Yan XIE ; Ming-De LU ; Chun-Hua DENG ; Hao-Tian LIN ; Yong GAO ; Zhu WANG
Asian Journal of Andrology 2025;27(2):254-260
Testicular histology based on testicular biopsy is an important factor for determining appropriate testicular sperm extraction surgery and predicting sperm retrieval outcomes in patients with azoospermia. Therefore, we developed a deep learning (DL) model to establish the associations between testicular grayscale ultrasound images and testicular histology. We retrospectively included two-dimensional testicular grayscale ultrasound from patients with azoospermia (353 men with 4357 images between July 2017 and December 2021 in The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China) to develop a DL model. We obtained testicular histology during conventional testicular sperm extraction. Our DL model was trained based on ultrasound images or fusion data (ultrasound images fused with the corresponding testicular volume) to distinguish spermatozoa presence in pathology (SPP) and spermatozoa absence in pathology (SAP) and to classify maturation arrest (MA) and Sertoli cell-only syndrome (SCOS) in patients with SAP. Areas under the receiver operating characteristic curve (AUCs), accuracy, sensitivity, and specificity were used to analyze model performance. DL based on images achieved an AUC of 0.922 (95% confidence interval [CI]: 0.908-0.935), a sensitivity of 80.9%, a specificity of 84.6%, and an accuracy of 83.5% in predicting SPP (including normal spermatogenesis and hypospermatogenesis) and SAP (including MA and SCOS). In the identification of SCOS and MA, DL on fusion data yielded better diagnostic performance with an AUC of 0.979 (95% CI: 0.969-0.989), a sensitivity of 89.7%, a specificity of 97.1%, and an accuracy of 92.1%. Our study provides a noninvasive method to predict testicular histology for patients with azoospermia, which would avoid unnecessary testicular biopsy.
Humans
;
Male
;
Azoospermia/diagnostic imaging*
;
Deep Learning
;
Testis/pathology*
;
Retrospective Studies
;
Adult
;
Ultrasonography/methods*
;
Sperm Retrieval
;
Sertoli Cell-Only Syndrome/diagnostic imaging*
10.Establishment of a Bortezomib-Resistant Multiple Myeloma Xenotransplantation Mouse Model by Transplanting Primary Cells from Patients.
Yan-Hua YUE ; Yi-Fang ZHOU ; Ying-Jie MIAO ; Yang CAO ; Fei WANG ; Yue LIU ; Feng LI ; Yang-Ling SHEN ; Yan-Ting GUO ; Yu-Hui HUANG ; Wei-Ying GU
Journal of Experimental Hematology 2025;33(1):133-141
OBJECTIVE:
To explore the construction method of a resistant multiple myeloma (MM) patient-derived xenotransplantation (PDX) model.
METHODS:
1.0×107 MM patient-derived mononuclear cells (MNCs), 2.0×106 MM.1S cells and 2.0×106 NCI-H929 cells were respectively subcutaneously inoculated into NOD.CB17-Prkdcscid Il2rgtm1/Bcgen (B-NDG) mice with a volume of 100 μl per mouse to establish mouse model. The morphologic, phenotypic, proliferative and genetic characteristics of PDX tumor were studied by hematoxylin-eosin staining, immunohistochemical staining (IHC), cell cycle analysis, flow cytometry and fluorescence in situ hybridization (FISH). The sensitivity of PDX tumor to bortezomib and anlotinib monotherapy or in combination was investigated through cell proliferation, apoptosis and in vitro and in vivo experiments. The effects of anlotinib therapy on tumor blood vessel and cell apoptosis were analyzed by IHC, TUNEL staining and confocal fluorescence microscope.
RESULTS:
MM PDX model was successfully established by subcutaneously inoculating primary MNCs. The morphologic features of tumor cells from MM PDX model were similar to those of mature plasma cells. MM PDX tumor cells positively expressed CD138 and CD38, which presented 1q21 amplification, deletion of Rb1 and IgH rearrangement, and had a lower proliferative activity than MM cell lines. in vitro, PDX, MM.1S and NCI-H929 cells were treated by bortezomib and anlotinib for 24 hours, respectively. Cell viability assay showed that the IC50 value of bortezomib were 5 716.486, 1.025 and 2.775 nmol/L, and IC50 value of anlotinib were 5 5107.337, 0.706 and 5.13 μmol/L, respectively. Anlotinib treatment increased the apoptosis of MM.1S cells (P < 0.01), but did not affect PDX tumor cells (P >0.05). in vivo, there was no significant difference in PDX tumor growth between bortezomib monotherapy group and control group (P >0.05), while both anlotinib monotherapy and anlotinib combined with bortezomib effectively inhibited PDX tumor growth (both P < 0.05). The vascular perfusion and vascular density of PDX tumor were decreased in anlotinib treatment group (both P < 0.01). The apoptotic cells in anlotinib treatment group were increased compared with those in control group (P < 0.05).
CONCLUSION
Bortezomib-resistant MM PDX model can be successfully established by subcutaneous inoculation of MNCs from MM patients in B-NDG mice. This PDX model, which retains the basic biological characteristics of MM cells, can be used to study the novel therapies.
Animals
;
Bortezomib
;
Humans
;
Multiple Myeloma/pathology*
;
Mice
;
Apoptosis
;
Drug Resistance, Neoplasm
;
Cell Line, Tumor
;
Xenograft Model Antitumor Assays
;
Mice, Inbred NOD
;
Disease Models, Animal
;
Cell Proliferation
;
Transplantation, Heterologous

Result Analysis
Print
Save
E-mail