1.Identification and Potential Clinical Utility of Common Genetic Variants in Gestational Diabetes among Chinese Pregnant Women
Claudia Ha-ting TAM ; Ying WANG ; Chi Chiu WANG ; Lai Yuk YUEN ; Cadmon King-poo LIM ; Junhong LENG ; Ling WU ; Alex Chi-wai NG ; Yong HOU ; Kit Ying TSOI ; Hui WANG ; Risa OZAKI ; Albert Martin LI ; Qingqing WANG ; Juliana Chung-ngor CHAN ; Yan Chou YE ; Wing Hung TAM ; Xilin YANG ; Ronald Ching-wan MA
Diabetes & Metabolism Journal 2025;49(1):128-143
Background:
The genetic basis for hyperglycaemia in pregnancy remain unclear. This study aimed to uncover the genetic determinants of gestational diabetes mellitus (GDM) and investigate their applications.
Methods:
We performed a meta-analysis of genome-wide association studies (GWAS) for GDM in Chinese women (464 cases and 1,217 controls), followed by de novo replications in an independent Chinese cohort (564 cases and 572 controls) and in silico replication in European (12,332 cases and 131,109 controls) and multi-ethnic populations (5,485 cases and 347,856 controls). A polygenic risk score (PRS) was derived based on the identified variants.
Results:
Using the genome-wide scan and candidate gene approaches, we identified four susceptibility loci for GDM. These included three previously reported loci for GDM and type 2 diabetes mellitus (T2DM) at MTNR1B (rs7945617, odds ratio [OR], 1.64; 95% confidence interval [CI],1.38 to 1.96]), CDKAL1 (rs7754840, OR, 1.33; 95% CI, 1.13 to 1.58), and INS-IGF2-KCNQ1 (rs2237897, OR, 1.48; 95% CI, 1.23 to 1.79), as well as a novel genome-wide significant locus near TBR1-SLC4A10 (rs117781972, OR, 2.05; 95% CI, 1.61 to 2.62; Pmeta=7.6×10-9), which has not been previously reported in GWAS for T2DM or glycaemic traits. Moreover, we found that women with a high PRS (top quintile) had over threefold (95% CI, 2.30 to 4.09; Pmeta=3.1×10-14) and 71% (95% CI, 1.08 to 2.71; P=0.0220) higher risk for GDM and abnormal glucose tolerance post-pregnancy, respectively, compared to other individuals.
Conclusion
Our results indicate that the genetic architecture of glucose metabolism exhibits both similarities and differences between the pregnant and non-pregnant states. Integrating genetic information can facilitate identification of pregnant women at a higher risk of developing GDM or later diabetes.
2.Identification and Potential Clinical Utility of Common Genetic Variants in Gestational Diabetes among Chinese Pregnant Women
Claudia Ha-ting TAM ; Ying WANG ; Chi Chiu WANG ; Lai Yuk YUEN ; Cadmon King-poo LIM ; Junhong LENG ; Ling WU ; Alex Chi-wai NG ; Yong HOU ; Kit Ying TSOI ; Hui WANG ; Risa OZAKI ; Albert Martin LI ; Qingqing WANG ; Juliana Chung-ngor CHAN ; Yan Chou YE ; Wing Hung TAM ; Xilin YANG ; Ronald Ching-wan MA
Diabetes & Metabolism Journal 2025;49(1):128-143
Background:
The genetic basis for hyperglycaemia in pregnancy remain unclear. This study aimed to uncover the genetic determinants of gestational diabetes mellitus (GDM) and investigate their applications.
Methods:
We performed a meta-analysis of genome-wide association studies (GWAS) for GDM in Chinese women (464 cases and 1,217 controls), followed by de novo replications in an independent Chinese cohort (564 cases and 572 controls) and in silico replication in European (12,332 cases and 131,109 controls) and multi-ethnic populations (5,485 cases and 347,856 controls). A polygenic risk score (PRS) was derived based on the identified variants.
Results:
Using the genome-wide scan and candidate gene approaches, we identified four susceptibility loci for GDM. These included three previously reported loci for GDM and type 2 diabetes mellitus (T2DM) at MTNR1B (rs7945617, odds ratio [OR], 1.64; 95% confidence interval [CI],1.38 to 1.96]), CDKAL1 (rs7754840, OR, 1.33; 95% CI, 1.13 to 1.58), and INS-IGF2-KCNQ1 (rs2237897, OR, 1.48; 95% CI, 1.23 to 1.79), as well as a novel genome-wide significant locus near TBR1-SLC4A10 (rs117781972, OR, 2.05; 95% CI, 1.61 to 2.62; Pmeta=7.6×10-9), which has not been previously reported in GWAS for T2DM or glycaemic traits. Moreover, we found that women with a high PRS (top quintile) had over threefold (95% CI, 2.30 to 4.09; Pmeta=3.1×10-14) and 71% (95% CI, 1.08 to 2.71; P=0.0220) higher risk for GDM and abnormal glucose tolerance post-pregnancy, respectively, compared to other individuals.
Conclusion
Our results indicate that the genetic architecture of glucose metabolism exhibits both similarities and differences between the pregnant and non-pregnant states. Integrating genetic information can facilitate identification of pregnant women at a higher risk of developing GDM or later diabetes.
3.Identification and Potential Clinical Utility of Common Genetic Variants in Gestational Diabetes among Chinese Pregnant Women
Claudia Ha-ting TAM ; Ying WANG ; Chi Chiu WANG ; Lai Yuk YUEN ; Cadmon King-poo LIM ; Junhong LENG ; Ling WU ; Alex Chi-wai NG ; Yong HOU ; Kit Ying TSOI ; Hui WANG ; Risa OZAKI ; Albert Martin LI ; Qingqing WANG ; Juliana Chung-ngor CHAN ; Yan Chou YE ; Wing Hung TAM ; Xilin YANG ; Ronald Ching-wan MA
Diabetes & Metabolism Journal 2025;49(1):128-143
Background:
The genetic basis for hyperglycaemia in pregnancy remain unclear. This study aimed to uncover the genetic determinants of gestational diabetes mellitus (GDM) and investigate their applications.
Methods:
We performed a meta-analysis of genome-wide association studies (GWAS) for GDM in Chinese women (464 cases and 1,217 controls), followed by de novo replications in an independent Chinese cohort (564 cases and 572 controls) and in silico replication in European (12,332 cases and 131,109 controls) and multi-ethnic populations (5,485 cases and 347,856 controls). A polygenic risk score (PRS) was derived based on the identified variants.
Results:
Using the genome-wide scan and candidate gene approaches, we identified four susceptibility loci for GDM. These included three previously reported loci for GDM and type 2 diabetes mellitus (T2DM) at MTNR1B (rs7945617, odds ratio [OR], 1.64; 95% confidence interval [CI],1.38 to 1.96]), CDKAL1 (rs7754840, OR, 1.33; 95% CI, 1.13 to 1.58), and INS-IGF2-KCNQ1 (rs2237897, OR, 1.48; 95% CI, 1.23 to 1.79), as well as a novel genome-wide significant locus near TBR1-SLC4A10 (rs117781972, OR, 2.05; 95% CI, 1.61 to 2.62; Pmeta=7.6×10-9), which has not been previously reported in GWAS for T2DM or glycaemic traits. Moreover, we found that women with a high PRS (top quintile) had over threefold (95% CI, 2.30 to 4.09; Pmeta=3.1×10-14) and 71% (95% CI, 1.08 to 2.71; P=0.0220) higher risk for GDM and abnormal glucose tolerance post-pregnancy, respectively, compared to other individuals.
Conclusion
Our results indicate that the genetic architecture of glucose metabolism exhibits both similarities and differences between the pregnant and non-pregnant states. Integrating genetic information can facilitate identification of pregnant women at a higher risk of developing GDM or later diabetes.
4.Identification and Potential Clinical Utility of Common Genetic Variants in Gestational Diabetes among Chinese Pregnant Women
Claudia Ha-ting TAM ; Ying WANG ; Chi Chiu WANG ; Lai Yuk YUEN ; Cadmon King-poo LIM ; Junhong LENG ; Ling WU ; Alex Chi-wai NG ; Yong HOU ; Kit Ying TSOI ; Hui WANG ; Risa OZAKI ; Albert Martin LI ; Qingqing WANG ; Juliana Chung-ngor CHAN ; Yan Chou YE ; Wing Hung TAM ; Xilin YANG ; Ronald Ching-wan MA
Diabetes & Metabolism Journal 2025;49(1):128-143
Background:
The genetic basis for hyperglycaemia in pregnancy remain unclear. This study aimed to uncover the genetic determinants of gestational diabetes mellitus (GDM) and investigate their applications.
Methods:
We performed a meta-analysis of genome-wide association studies (GWAS) for GDM in Chinese women (464 cases and 1,217 controls), followed by de novo replications in an independent Chinese cohort (564 cases and 572 controls) and in silico replication in European (12,332 cases and 131,109 controls) and multi-ethnic populations (5,485 cases and 347,856 controls). A polygenic risk score (PRS) was derived based on the identified variants.
Results:
Using the genome-wide scan and candidate gene approaches, we identified four susceptibility loci for GDM. These included three previously reported loci for GDM and type 2 diabetes mellitus (T2DM) at MTNR1B (rs7945617, odds ratio [OR], 1.64; 95% confidence interval [CI],1.38 to 1.96]), CDKAL1 (rs7754840, OR, 1.33; 95% CI, 1.13 to 1.58), and INS-IGF2-KCNQ1 (rs2237897, OR, 1.48; 95% CI, 1.23 to 1.79), as well as a novel genome-wide significant locus near TBR1-SLC4A10 (rs117781972, OR, 2.05; 95% CI, 1.61 to 2.62; Pmeta=7.6×10-9), which has not been previously reported in GWAS for T2DM or glycaemic traits. Moreover, we found that women with a high PRS (top quintile) had over threefold (95% CI, 2.30 to 4.09; Pmeta=3.1×10-14) and 71% (95% CI, 1.08 to 2.71; P=0.0220) higher risk for GDM and abnormal glucose tolerance post-pregnancy, respectively, compared to other individuals.
Conclusion
Our results indicate that the genetic architecture of glucose metabolism exhibits both similarities and differences between the pregnant and non-pregnant states. Integrating genetic information can facilitate identification of pregnant women at a higher risk of developing GDM or later diabetes.
5.Regulation of Immune Balance by Traditional Chinese Medicine in Treatment of Cough Variant Asthma: A Review
Han YANG ; Yonghuang YAN ; Wenting ZHANG ; Peixuan ZHU ; Fang YAN ; Yujie WU ; Shiqing QIAO ; Tieshan WANG ; Zeqi SU ; Ting WANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(5):206-212
Cough variant asthma (CVA) is a chronic respiratory disease with cough as its main symptom. The occurrence of CVA is closely related to non-specific airway inflammation, and its pathogenesis involves environmental, genetic, immune, and other factors. In recent years, the advantages of traditional Chinese medicine (TCM) in the treatment of CVA have attracted the attention of experts and scholars in China and abroad, especially its prominent role in regulating immune balance, relieving cough symptoms in CVA patients, and reducing recurrence. T Helper cells 1 (Th1), T helper cells 2 (Th2), T helper cells 17 (Th17), and regulatory T cells (Treg) are derived from CD4+ T cells. Immune imbalance of Th1/Th2 and Th17/Treg is a new hotspot in the pathogenesis of CVA and a potential key target in the treatment of CVA by TCM. Th cell subsets are in dynamic balance under physiological conditions, maintaining respiratory immune homeostasis in which pro-inflammatory cytokines and anti-inflammatory cytokines are balanced. Immature helper T cells (Th0) can be differentiated into Th1, Th2, Th17, Treg, and other cell subsets due to cytokine types in the microenvironment in the stage of CVA maturation. The proliferation of Th2 cells leads to eosinophilic airway inflammation. Excessive differentiation of Th17 cells induces neutrophil airway inflammation. Th1/Th2 and Th17/Treg cells are mutually restricted in number and function, and the immune imbalance of Th1/Th2 and Th17/Treg is easy to aggravate the generation of inflammatory response. Restoring immune balance is particularly important for the airway anti-inflammatory therapy of CVA. In this paper, the imbalance of Th1/Th2 and Th17/Treg and the pathogenesis of CVA were systematically expounded. Meanwhile, the latest research on the regulation of immune imbalance by TCM compound, single TCM, and its effective ingredients in the treatment of CVA was reviewed. It provides ideas and references for revealing the scientific connotation of TCM regulating immune balance therapy of CVA, as well as the development of clinical treatment and basic research of CVA.
6.Research status of traditional Chinese medicine intervention in mTOR pathway targeting autophagy for prevention and treatment of diabetic nephropathy
Shi-Rui YANG ; Ting-Ting ZHOU ; Chao-Chao MA ; Peng-Fei YANG ; Fan-Qi NIU ; Xue-Yang DU ; Feng-Zhe YAN ; Si-Nong WANG
The Chinese Journal of Clinical Pharmacology 2024;40(11):1675-1678
Diabetic kidney disease(DKD)is one of the most important complications of diabetes.In recent years,domestic and foreign studies have found that mammalian target protein of rapamycin(mTOR)related signaling pathway is a classic pathway involved in the regulation of autophagy,which can achieve the therapeutic effect of DKD by targeting the autophagy pathway,and plays a crucial role in the prevention and treatment of DKD.In this paper,we reviewed the mechanism of mTOR-related signaling pathway targeted autophagy in the prevention and treatment of DKD,in order to provide a new reference and basis for clinical prevention and treatment of DKD.
7.Rubescensine A reduces podocyte damage induced by high glucose through the autophagy pathway mediated by AMPK/SIRT1 pathway
Zhenzhen LI ; Ting HUANG ; Yang BAI ; Yan WANG
Chinese Journal of Diabetes 2024;32(3):203-209
Objective To investigate the mechanism that Rubescensine A reduces the podocyte damage induced by high glucose(HG)through the autophagy pathway mediated by AMP activated protein kinase/silent information regulator 1(AMPK/SIRT1)pathway.Methods Human glomerular podocytes were cultured in vitro,and randomly divided into Control group(Con),HG group,hydroxychloroquine(HCQ)group,and Rapamycin(RAP)group.CCK-8 was used to detect cell viability.Western blotting was used to detect cell apoptosis and podocyte injury related protein expression in each group.The podocyte model induced by high glucose(HG)was treated with Rubescensine A(Rub A)at different concentrations and the optimal concentration was selected.Then,human glomerular podocytes were randomly divided into Con group,HG group,Rub A group,Compound C group,and Rub A+Compound C group.The expression of autophagy,AMPK/SIRT1 pathway related proteins were detected in each group.Results Compared with Con group,the podocyte viability and the protein expressions of Synaptopodin and Bcl-2 was significantly reduced(P<0.05),while the protein expressions of Desmin and Bax were significantly increased in HG group(P<0.05).Compared with the HG group,all indicators were relieved in RAP group.However,the levels of all indicators were worsened in HCQ group.Compared with Con group,the expression levels of Desminand Bax proteins in podocytes were significantly increased(P<0.05),and the podocyte viability,number of autophagosomes,the expression levels of Synaptopodin,Bcl-2,microtubule associated protein light chain 3(LC3)II/I,Beclin-1,p-AMPK/AMPK and SIRT1 proteins were significantly reduced in HG group(P<0.05).Compared with HG group and Rub A+Compound C group,the above indicators were improved in Rub A group.Compound C group reversed the protective effect of Rub A.Conclusion Rubescensine A can promote autophagy by activating AMPK/SIRT1 pathway,thereby reduce podocyte damage induced by high glucose.
8.Inflammatory and Immunomodulatory Effects of Tripterygium wilfordii Multiglycoside in Mouse Models of Psoriasis Keratinocytes.
Shuo ZHANG ; Hong-Jin LI ; Chun-Mei YANG ; Liu LIU ; Xiao-Ying SUN ; Jiao WANG ; Si-Ting CHEN ; Yi LU ; Man-Qi HU ; Ge YAN ; Ya-Qiong ZHOU ; Xiao MIAO ; Xin LI ; Bin LI
Chinese journal of integrative medicine 2024;30(3):222-229
OBJECTIVE:
To determine the role of Tripterygium wilfordii multiglycoside (TGW) in the treatment of psoriatic dermatitis from a cellular immunological perspective.
METHODS:
Mouse models of psoriatic dermatitis were established by imiquimod (IMQ). Twelve male BALB/c mice were assigned to IMQ or IMQ+TGW groups according to a random number table. Histopathological changes in vivo were assessed by hematoxylin and eosin staining. Ratios of immune cells and cytokines in mice, as well as PAM212 cell proliferation in vitro were assessed by flow cytometry. Pro-inflammatory cytokine expression was determined using reverse transcription quantitative polymerase chain reaction.
RESULTS:
TGW significantly ameliorated the severity of IMQ-induced psoriasis-like mouse skin lesions and restrained the activation of CD45+ cells, neutrophils and T lymphocytes (all P<0.01). Moreover, TGW significantly attenuated keratinocytes (KCs) proliferation and downregulated the mRNA levels of inflammatory cytokines including interleukin (IL)-17A, IL-23, tumor necrosis factor α, and chemokine (C-X-C motif) ligand 1 (P<0.01 or P<0.05). Furthermore, it reduced the number of γ δ T17 cells in skin lesion of mice and draining lymph nodes (P<0.01).
CONCLUSIONS
TGW improved psoriasis-like inflammation by inhibiting KCs proliferation, as well as the associated immune cells and cytokine expression. It inhibited IL-17 secretion from γ δ T cells, which improved the immune-inflammatory microenvironment of psoriasis.
Male
;
Animals
;
Mice
;
Tripterygium
;
Psoriasis/drug therapy*
;
Keratinocytes
;
Skin Diseases/metabolism*
;
Cytokines/metabolism*
;
Imiquimod/metabolism*
;
Dermatitis/pathology*
;
Disease Models, Animal
;
Mice, Inbred BALB C
;
Skin/metabolism*
9.Research progress on protein engineering technology and its application in the synthesis biology of medicinal natural products
Xiao-yan SUN ; Jing-jing CHEN ; Tian-jiao CHEN ; Ting GONG ; Jin-ling YANG ; Ping ZHU
Acta Pharmaceutica Sinica 2024;59(6):1601-1615
Natural products are important sources of drug discovery. However, the traditional methods of extraction and isolation, as well as chemical synthesis for obtaining natural products are associated with issues such as operational complexity, high costs, low efficiency, and environmental pollution. Constructing microbial cell factories through synthetic biology methods to produce medicinal natural products has the advantages of high efficiency, low cost, and environmental protection. Nevertheless, the scope and yield improvement of the products are limited by the limitations of enzymes in microbial cell factories. Protein engineering is considered one of the most effective approaches to overcome these limitations. This article introduces commonly used methods of protein engineering technology and summarizes its specific applications in improving enzyme performance, modifying the enzymatic environment, and promoting the development of synthetic biology tools in the field of pharmaceutical natural product synthesis. Furthermore, it analyzes the current bottlenecks and challenges in protein engineering and looks forward to its future application prospects, offering insights for the development and practical use of protein engineering technology.
10.Analysis of the biosynthesis pathways of phenols in the leaves of Tetrastigma hemsleyanum regulated by supplemental blue light based on transcriptome sequencing
Hui-long XU ; Nan YANG ; Yu-yan HONG ; Meng-ting PAN ; Yu-chun GUO ; Shi-ming FAN ; Wen XU
Acta Pharmaceutica Sinica 2024;59(10):2864-2870
Analyze the changes in phenolic components and gene expression profiles of

Result Analysis
Print
Save
E-mail