1.Comparative analysis of characteristics and functions of exosomes from human induced pluripotent stem cell-derived platelets and apheresis platelets
Weihua HUANG ; Yan ZANG ; Aihua QIN ; Ziyang FENG ; Heshan TANG ; Fei GUO ; Chuyan WU ; Qiu SHEN ; Baohua QIAN ; Haihui GU ; Zhanshan CHA
Chinese Journal of Blood Transfusion 2025;38(9):1154-1161
Objective: To compare the biological characteristics of human induced pluripotent stem cell-derived platelet exosomes (hiPSC-Plt-Exos) with those of conventional apheresis platelet exosomes (Plt-Exos), specifically focusing on their differential abilities to enhance the proliferation and migration of human umbilical cord mesenchymal stem cells (hUC-MSCs). Methods: Exosomes were isolated from hiPSC-derived Plt and apheresis Plt concentrate using size exclusion chromatography. These exosomes were then characterized through nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and Western blotting. Co-culture experiments into hUC-MSCs were conducted with hiPSC-Plt-Exos and apheresis Plt-Exos, respectively. Their effects on the proliferation and migration of hUC-MSCs were assessed via cell proliferation assays and scratch tests. Results: hiPSC-Plt-Exos and apheresis Plt-Exos exhibited comparable particle sizes, morphological features (such as the characteristic cup-shaped structure), and surface markers (including CD9 and HSP70). Notably, hiPSC-Plt-Exos demonstrated a significantly greater ability to enhance the proliferation and migration of hUC-MSCs compared to apheresis Plt-Exos (P<0.05). These differences provide critical comparative data for their application in various clinical contexts. Conclusion: This study establishes a theoretical foundation for developing precise therapeutic strategies based on hiPSC-Plt-Exos. Furthermore, it underscores the necessity of selecting the appropriate type of exosomes according to the specific disease microenvironment to achieve optimal therapeutic outcomes.
2.Inhibition of interferon regulatory factor 4 orchestrates T cell dysfunction, extending mouse cardiac allograft survival.
Wenjia YUAN ; Hedong ZHANG ; Longkai PENG ; Chao CHEN ; Chen FENG ; Zhouqi TANG ; Pengcheng CUI ; Yaguang LI ; Tengfang LI ; Xia QIU ; Yan CUI ; Yinqi ZENG ; Jiadi LUO ; Xubiao XIE ; Yong GUO ; Xin JIANG ; Helong DAI
Chinese Medical Journal 2025;138(10):1202-1212
BACKGROUND:
T cell dysfunction, which includes exhaustion, anergy, and senescence, is a distinct T cell differentiation state that occurs after antigen exposure. Although T cell dysfunction has been a cornerstone of cancer immunotherapy, its potential in transplant research, while not yet as extensively explored, is attracting growing interest. Interferon regulatory factor 4 (IRF4) has been shown to play a pivotal role in inducing T cell dysfunction.
METHODS:
A novel ultra-low-dose combination of Trametinib and Rapamycin, targeting IRF4 inhibition, was employed to investigate T cell proliferation, apoptosis, cytokine secretion, expression of T-cell dysfunction-associated molecules, effects of mitogen-activated protein kinase (MAPK) and mammalian target of rapamycin (mTOR) signaling pathways, and allograft survival in both in vitro and BALB/c to C57BL/6 mouse cardiac transplantation models.
RESULTS:
In vitro , blockade of IRF4 in T cells effectively inhibited T cell proliferation, increased apoptosis, and significantly upregulated the expression of programmed cell death protein 1 (PD-1), Helios, CD160, and cytotoxic T lymphocyte-associated antigen (CTLA-4), markers of T cell dysfunction. Furthermore, it suppressed the secretion of pro-inflammatory cytokines interferon (IFN)-γ and interleukin (IL)-17. Combining ultra-low-dose Trametinib (0.1 mg·kg -1 ·day -1 ) and Rapamycin (0.1 mg·kg -1 ·day -1 ) demonstrably extended graft survival, with 4 out of 5 mice exceeding 100 days post-transplantation. Moreover, analysis of grafts at day 7 confirmed sustained IFN regulatory factor 4 (IRF4) inhibition, enhanced PD-1 expression, and suppressed IFN-γ secretion, reinforcing the in vivo efficacy of this IRF4-targeting approach. The combination of Trametinib and Rapamycin synergistically inhibited the MAPK and mTOR signaling network, leading to a more pronounced suppression of IRF4 expression.
CONCLUSIONS
Targeting IRF4, a key regulator of T cell dysfunction, presents a promising avenue for inducing transplant immune tolerance. In this study, we demonstrate that a novel ultra-low-dose combination of Trametinib and Rapamycin synergistically suppresses the MAPK and mTOR signaling network, leading to profound IRF4 inhibition, promoting allograft acceptance, and offering a potential new therapeutic strategy for improved transplant outcomes. However, further research is necessary to elucidate the underlying pharmacological mechanisms and facilitate translation to clinical practice.
Animals
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Interferon Regulatory Factors/metabolism*
;
Heart Transplantation/methods*
;
T-Lymphocytes/immunology*
;
Sirolimus/therapeutic use*
;
Pyridones/therapeutic use*
;
Graft Survival/drug effects*
;
Pyrimidinones/therapeutic use*
;
Cell Proliferation/drug effects*
;
Apoptosis/drug effects*
;
Male
;
Signal Transduction/drug effects*
3.Identification of GSK3 family and regulatory effects of brassinolide on growth and development of Nardostachys jatamansi.
Yu-Yan LEI ; Zheng MA ; Jing WEI ; Wen-Bing LI ; Ying LI ; Zheng-Ming YANG ; Shao-Shan ZHANG ; Jing-Qiu FENG ; Hua-Chun SHENG ; Yuan LIU
China Journal of Chinese Materia Medica 2025;50(2):395-403
This study identified 8 members including NjBIN2 of the GSK3 family in Nardostachys jatamansi by bioinformatics analysis. Moreover, the phylogenetic tree revealed that the GKS3 family members of N. jatamansi had a close relationship with those of Arabidopsis. RT-qPCR results showed that NjBIN2 presented a tissue-specific expression pattern with the highest expression in roots, suggesting that NjBIN2 played a role in root growth and development. In addition, the application of epibrassinolide or the brassinosteroid(BR) synthesis inhibitor(brassinazole) altered the expression pattern of NjBIN2 and influenced the photomorphogenesis(cotyledon opening) and root development of N. jatamansi, which provided direct evidence about the functions of NjBIN2. In conclusion, this study highlights the roles of BIN2 in regulating the growth and development of N. jatamansi by analyzing the expression pattern and biological function of NjBIN2. It not only enriches the understanding about the regulatory mechanism of the growth and development of N. jatamansi but also provides a theoretical basis and potential gene targets for molecular breeding of N. jatamansi with improved quality in the future.
Brassinosteroids/metabolism*
;
Steroids, Heterocyclic/metabolism*
;
Gene Expression Regulation, Plant/drug effects*
;
Plant Proteins/metabolism*
;
Phylogeny
;
Nardostachys/metabolism*
;
Plant Growth Regulators/pharmacology*
;
Plant Roots/drug effects*
4.Expert consensus on the application of nasal cavity filling substances in nasal surgery patients(2025, Shanghai).
Keqing ZHAO ; Shaoqing YU ; Hongquan WEI ; Chenjie YU ; Guangke WANG ; Shijie QIU ; Yanjun WANG ; Hongtao ZHEN ; Yucheng YANG ; Yurong GU ; Tao GUO ; Feng LIU ; Meiping LU ; Bin SUN ; Yanli YANG ; Yuzhu WAN ; Cuida MENG ; Yanan SUN ; Yi ZHAO ; Qun LI ; An LI ; Luo BA ; Linli TIAN ; Guodong YU ; Xin FENG ; Wen LIU ; Yongtuan LI ; Jian WU ; De HUAI ; Dongsheng GU ; Hanqiang LU ; Xinyi SHI ; Huiping YE ; Yan JIANG ; Weitian ZHANG ; Yu XU ; Zhenxiao HUANG ; Huabin LI
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(4):285-291
This consensus will introduce the characteristics of fillers used in the surgical cavities of domestic nasal surgery patients based on relevant literature and expert opinions. It will also provide recommendations for the selection of cavity fillers for different nasal diseases, with chronic sinusitis as a representative example.
Humans
;
Nasal Cavity/surgery*
;
Nasal Surgical Procedures
;
China
;
Consensus
;
Sinusitis/surgery*
;
Dermal Fillers
5.Lacticaseibacillus paracasei E6 improves vinorelbine-induced immunosuppression in zebrafish through its metabolites acetic acid and propionic acid.
Xu XINZHU ; Lina GUO ; Kangdi ZHENG ; Yan MA ; Shuxian LIN ; Yingxi HE ; Wen SHENG ; Suhua XU ; Feng QIU
Journal of Southern Medical University 2025;45(2):331-339
OBJECTIVES:
To explore the mechanism of Lacticaseibacillus paracasei E6 for improving vinorelbine-induced immunosuppression in zebrafish.
METHODS:
The intestinal colonization of L. paracasei E6 labeled by fluorescein isothiocyanate (FITC) in zebrafish was observed under fluorescence microscope. In a zebrafish model of vinorelbine-induced immunosuppression, the immunomodulatory activity of L. paracasei E6 was assessed by analyzing macrophage and neutrophil counts in the caudal hematopoietic tissue (CHT), the number of T-lymphocyte, and the expressions of interleukin-12 (IL-12) and interferon-γ (IFN-γ). The contents of short-chain fatty acids (SCFAs) in L. paracasei E6 fermentation supernatant and the metabolites of L. paracasei E6 in zebrafish were detected by LC-MS/MS-based targeted metabolomics. The immunomodulatory effects of the SCFAs including sodium acetate, sodium propionate and sodium butyrate were evaluated in the zebrafish model of immunosuppression.
RESULTS:
After inoculation, green fluorescence of FITC-labeled L. paracasei E6 was clearly observed in the intestinal ball, midgut and posterior gut regions of zebrafish. In the immunocompromised zebrafish model, L. paracasei E6 significantly alleviated the reduction of macrophage and neutrophil counts in the CHT, increased the fluorescence intensity of T-lymphocytes, and promoted the expressions of IL-12 and IFN-γ. Compared with MRS medium, L. paracasei E6 fermentation supernatant showed significantly higher levels of acetic acid, propionic acid and butyric acid, which were also detected in immunocompromised zebrafish following treatment with L. paracasei E6. Treatment of the zebrafish model with sodium acetate and sodium propionate significantly increased macrophage and neutrophil counts in the CHT and effectively inhibited vinorelbine-induced reduction of thymus T cells.
CONCLUSIONS
L. paracasei E6 can improve vinorelbine-induced immunosuppression in zebrafish through its SCFA metabolites acetic acid and propionic acid.
Animals
;
Zebrafish/immunology*
;
Acetic Acid/metabolism*
;
Propionates/metabolism*
;
Fatty Acids, Volatile/metabolism*
6.Lactobacillus plantarum ZG03 alleviates oxidative stress via its metabolites short-chain fatty acids.
Shuxian LIN ; Lina GUO ; Yan MA ; Yao XIONG ; Yingxi HE ; Xinzhu XU ; Wen SHENG ; Suhua XU ; Feng QIU
Journal of Southern Medical University 2025;45(10):2223-2230
OBJECTIVES:
To investigate the efficacy of Lactobacillus plantarum ZG03 (L. plantarum ZG03) for ameliorating oxidative stress in zebrafish.
METHODS:
We evaluated the growth pattern of L. plantarum ZG03, observed its morphology using field emission scanning electron microscopy, and assessed its safety and potential efficacy with whole-genome sequencing for genetic analysis. FITC-labeled ZG03 was used to observe its intestinal colonization in zebrafish. In a zebrafish model of 2% glucose-induced oxidative stress, the effect of ZG03 was evaluated by assessing the changes in neutrophils in the caudal hematopoietic tissue (CHT), superoxide dismutase (SOD) activity, reactive oxygen species (ROS) levels, and malondialdehyde (MDA) content. Liquid chromatography-mass spectrometry-based targeted metabolomics was used for analyzing short-chain fatty acids (SCFAs) in the zebrafish, and the antioxidant effects of the key metabolites (acetate, propionate, and caproate) were tested.
RESULTS:
On MRS agar, L. plantarum ZG03 formed circular, smooth, moist, and milky-white colonies with a rod-shaped cell morphology. Genomic analysis revealed abundant sugar metabolism gene clusters. After inoculation of FITC-labeled L. plantarum ZG03 in zebrafish, green fluorescence was clearly observed in the intestinal bulb, mid-intestine, and hind intestine. In zebrafish with glucose-induced oxidative stress, L. plantarum ZG03 significantly reduced ROS levels and the number of neutrophils in the CHT with increased SOD activity. L.plantarum ZG03 significantly increased the content of SCFAs including acetic acid, propionic acid, and caproic acid in zebrafish metabolites. In addition, sodium acetate, sodium propionate, and sodium caproate in the SCFAs significantly increased SOD activity in the zebrafish models.
CONCLUSIONS
L. plantarum ZG03 ameliorates oxidative stress in a glucose-induced zebrafish model through its metabolites, particularly the SCFAs including acetic acid, propionic acid and caproic acid.
Animals
;
Zebrafish/metabolism*
;
Oxidative Stress
;
Lactobacillus plantarum/metabolism*
;
Fatty Acids, Volatile/metabolism*
;
Probiotics
;
Reactive Oxygen Species/metabolism*
;
Superoxide Dismutase/metabolism*
7.Comparative Analysis of Histological Tools for Myelin.
Zihui AN ; Shuo YAN ; Jiayi WANG ; Hanqing QIU ; Binghua XIE ; Shumei FENG ; Mengsheng QIU ; Zhou TAN
Neuroscience Bulletin 2025;41(9):1656-1668
Myelin is an essential structure that facilitates rapid saltatory conduction in the nervous system. Discrepancies in myelin microstructure are a hallmark of numerous neurological disorders, rendering the assessment of myelin integrity and content an indispensable tool in clinical diagnostics and neuroscience research. Extensive research has been dedicated to scrutinizing its biochemical makeup and morphology under normal, pathological, and experimental conditions over the years. In this review, we present an updated summary of the myelin sheath's structure, composition, and developmental trajectory. We systematically enumerate and contrast eight prevalent myelin staining techniques across dimensions of sensitivity, specificity, and resolution, delving into their underlying staining principles. With an initial application of myelin histology on the mouse demyelination model, our review accentuates the accurate delineation of myelination and the microstructural analysis of the myelin sheath. Such insights are anticipated to significantly contribute to the evaluation and understanding of white matter pathologies.
Myelin Sheath/metabolism*
;
Animals
;
Humans
;
Demyelinating Diseases/pathology*
;
Staining and Labeling/methods*
8.A promising strategy of brain targeted delivery for the treatment of Parkinson's disease: Cyclodextrin supramolecular inclusion complex based thermosensitive gel.
Yan-Qiu WANG ; Li-Ming WANG ; Li-Feng HAN ; Yi-Bing CHEN ; Yuan-Lu CUI
Journal of Pharmaceutical Analysis 2025;15(5):101102-101102
Image 1.
9.Resveratrol promotes mitophagy via the MALAT1/miR-143-3p/RRM2 axis and suppresses cancer progression in hepatocellular carcinoma.
Chun-Yan FENG ; Cheng-Song CAI ; Xiao-Qian SHI ; Zhi-Juan ZHANG ; Dan SU ; Yun-Qing QIU
Journal of Integrative Medicine 2025;23(1):79-92
OBJECTIVE:
Resveratrol (Res) is a promising anticancer drug against hepatocellular carcinoma (HCC), but whether its anti-HCC effects implicate mitophagy remains unclear. Therefore, we aimed to explore the specific role of Res in mitophagy and the related mechanisms during the treatment of HCC.
METHODS:
HepG2 cells and tumor-grafted nude mice were used to investigate the effects of low-, middle- and high-dose of Res on HCC progression and mitophagy in vitro and in vivo, respectively. A series of approaches including cell counting kit-8, flow cytometry, wound healing and transwell assays were used to evaluate tumor cell functions. Transmission electron microscopy, immunofluorescence and Western blotting were used to assess mitophagy. Mitochondrial oxygen consumption rate, reactive oxygen species and membrane potential were used to reflect mitochondrial function. After disrupting the expression of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), miR-143-3p, and ribonucleoside reductase M2 (RRM2), the effects of the MALAT1/miR-143-3p/RRM2 axis on cell function and mitophagy under Res treatment were explored in vitro. Additionally, dual-luciferase reporter and chromatin immunoprecipitation were used to confirm interactions between target genes.
RESULTS:
Res significantly inhibited the proliferation and promoted apoptosis of HCC cells in vitro, while significantly suppressing tumor growth in a dose-dependent manner and inducing mitophagy and mitochondrial dysfunction in vivo. Interestingly, MALAT1 was highly expressed in HCC cells and its knockdown upregulated miR-143-3p expression in HCC cells, which subsequently inhibited RRM2 expression. Furthermore, in nude mice grafted with HCC tumors and treated with Res, the expression of MALAT1, miR-143-3p and RRM2 were altered significantly. In vitro data further supported the targeted binding relationships between MALAT1 and miR-143-3p and between miR-143-3p and RRM2. Therefore, a series of cell-based experiments were carried out to study the mechanism of the MALAT1/miR-143-3p/RRM2 axis involved in mitophagy and HCC; these experiments revealed that MALAT1 knockdown, miR-143-3p mimic and RRM silencing potentiated the antitumor effects of Res and its activation of mitophagy.
CONCLUSION
Res facilitated mitophagy in HCC and exerted anti-cancer effects by targeting the MALAT1/miR-143-3p/RRM2 axis. Please cite this article as: Feng CY, Cai CS, Shi XQ, Zhang ZJ, Su D, Qiu YQ. Resveratrol promotes mitophagy via the MALAT1/miR-143-3p/RRM2 axis and suppresses cancer progression in hepatocellular carcinoma. J Integr Med. 2025; 23(1): 79-91.
Humans
;
MicroRNAs/genetics*
;
Liver Neoplasms/metabolism*
;
Carcinoma, Hepatocellular/metabolism*
;
Mitophagy/drug effects*
;
Resveratrol/pharmacology*
;
Animals
;
Mice, Nude
;
RNA, Long Noncoding/genetics*
;
Hep G2 Cells
;
Mice
;
Disease Progression
;
Mice, Inbred BALB C
10.Dimeric sesquiterpenoids with anti-inflammatory activities from Inula britannica.
Juan ZHANG ; Jiankun YAN ; Hongjun DONG ; Rui ZHANG ; Jing CHANG ; Yanli FENG ; Xinrong XU ; Wei LI ; Feng QIU ; Chengpeng SUN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(8):961-971
In continuation of research aimed at identifying anti-inflammatory agents from natural sesquiterpenoids, an activity-guided fractionation approach utilizing lipopolysaccharide (LPS)-mediated RAW264.7 cells was employed to investigate chemical constituents from Inula Britannica (I. britannica). Seven novel sesquiterpenoid dimers inulabritanoids A-G (1-7) and two novel sesquiterpenoid monomers inulabritanoids H (8) and I (9) were isolated from I. britannica together with eighteen known compounds (10-27). The structural elucidation was accomplished through comprehensive analysis of 1D and 2D nuclear magnetic resonance (NMR), high-resolution mass spectrometry (HR-MS), and electronic circular dichroism (ECD) spectra, complemented by quantum chemical calculations. Compounds 1, 2, 12, 16, 19, and 26 demonstrated inhibitory effects on NO production, with IC50 values of 3.65, 5.48, 3.29, 6.91, 3.12, and 5.67 μmol·L-1, respectively. Mechanistic studies revealed that compound 1 inhibited IκB kinase β (IKKβ) phosphorylation, thereby blocking nuclear factor κB (NF-κB) nuclear translocation, and activated the kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) signal pathway, leading to decreased expression of NADPH oxidase 2 (NOX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), monocyte chemotactic protein-1 (MCP-1), IL-1β, and IL-1α and increased expression of NAD(P)H: quinone oxidoreductase 1 (NQO-1) and heme oxygenase-1 (HO-1), thus exhibiting anti-inflammatory effects in vitro. These results indicate that dimeric sesquiterpenoids may serve as promising candidates for anti-inflammatory drug development.
Mice
;
Animals
;
Sesquiterpenes/isolation & purification*
;
Anti-Inflammatory Agents/isolation & purification*
;
Inula/chemistry*
;
RAW 264.7 Cells
;
Nitric Oxide
;
Molecular Structure
;
NF-kappa B/immunology*
;
NF-E2-Related Factor 2/immunology*
;
Macrophages/immunology*
;
Nitric Oxide Synthase Type II/immunology*
;
Plant Extracts/pharmacology*
;
Lipopolysaccharides
;
Tumor Necrosis Factor-alpha/immunology*
;
I-kappa B Kinase/genetics*

Result Analysis
Print
Save
E-mail