1.Effect of Different Fermentation Conditions on Fungal Community and Chemical Composition of Aurantii Fructus
Zhihong YAN ; Xiumei LIU ; Qiuyan GUAN ; Yonggui SONG ; Zhifu AI ; Genhua ZHU ; Yuhui PING ; Ming YANG ; Qin ZHENG ; Huanhua XU ; Dan SU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):254-262
ObjectiveTo investigate the effects of different fermentation methods and times on the fungal flora and chemical composition of Aurantii Fructus, in order to obtain the optimal fermentation conditions and flora structure, and to ensure the stability and controllability of the fermented varieties. MethodsScanning electron microscopy was used to observe and analyze the colony characteristics on the surface of Aurantii Fructus under different fermentation conditions. Internal transcribed spacer 2(ITS2) high-throughput sequencing, combined with fungal community diversity analysis and fungal community structure analysis, were used to obtain the fungal flora microbial categories of Aurantii Fructus under the conditions of traditional pressure-shelf fermentation and non-pressure-shelf natural fermentation for 7, 14, 21 d(numbered Y1-Y3 for the former, and numbered F1-F3 for the latter), respectively. At the same time, the chemical components in the fermentation process were detected by ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS), combined with principal component analysis(PCA), partial least squares-discriminant analysis(PLS-DA) and compound retention time, parent ions, characteristic fragment ions and other information, the differential compounds between the different fermentation samples were screened and identified. ResultsThe analysis of fungal community diversity showed that the dominant flora did not change at different fermentation time points in the traditional pressure-shelf fermentation method, while in the non-pressure-shelf natural fermentation method, there was a significant difference with the fermentation process, and at the genus level, the dominant genus of samples Y1, Y2, Y3 and F2 was Aspergillus, while the dominant genera of samples F1 and F3 were both Rhizopus. This indicated that the microbial growth environment provided by the traditional fermentation method was more stable, and the microbial community structure was more stable, which was more conducive to the stable and controllable fermentation process and fermented products. A total of 155 compounds were identified by compositional analysis, including 70 flavonoids, 38 coumarins, 10 alkaloids, 34 organic acids and 3 other compounds. After fermentation, two new components of ribalinine and pranferin were produced. Different fermentation conditions also brought about differences in chemical composition, multivariate statistical analysis obtained 26 differential compounds under two different fermentation methods, mainly including flavonoids, organic acids and coumarins. Comprehensively, the microbial community structure of samples fermented by the traditional pressure-shelf method of Aurantii Fructus for 14 d was stable, the species richness was high and the overall content of differential compounds was high, which was the optimal processing condition. ConclusionCompared with non-pressure-shelf natural fermentation, the traditional method has obvious advantages in terms of the stability of the microbial community structure and the content of chemical compounds, and the optimal condition is 14 days of fermentation. This study is helpful to promote the quality stability and fermentation bioavailability of fermented products of Aurantii Fructus, as well as to provide an experimental basis for the further improvement of the quality control methods of this variety.
2.Effect of Different Fermentation Conditions on Fungal Community and Chemical Composition of Aurantii Fructus
Zhihong YAN ; Xiumei LIU ; Qiuyan GUAN ; Yonggui SONG ; Zhifu AI ; Genhua ZHU ; Yuhui PING ; Ming YANG ; Qin ZHENG ; Huanhua XU ; Dan SU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):254-262
ObjectiveTo investigate the effects of different fermentation methods and times on the fungal flora and chemical composition of Aurantii Fructus, in order to obtain the optimal fermentation conditions and flora structure, and to ensure the stability and controllability of the fermented varieties. MethodsScanning electron microscopy was used to observe and analyze the colony characteristics on the surface of Aurantii Fructus under different fermentation conditions. Internal transcribed spacer 2(ITS2) high-throughput sequencing, combined with fungal community diversity analysis and fungal community structure analysis, were used to obtain the fungal flora microbial categories of Aurantii Fructus under the conditions of traditional pressure-shelf fermentation and non-pressure-shelf natural fermentation for 7, 14, 21 d(numbered Y1-Y3 for the former, and numbered F1-F3 for the latter), respectively. At the same time, the chemical components in the fermentation process were detected by ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS), combined with principal component analysis(PCA), partial least squares-discriminant analysis(PLS-DA) and compound retention time, parent ions, characteristic fragment ions and other information, the differential compounds between the different fermentation samples were screened and identified. ResultsThe analysis of fungal community diversity showed that the dominant flora did not change at different fermentation time points in the traditional pressure-shelf fermentation method, while in the non-pressure-shelf natural fermentation method, there was a significant difference with the fermentation process, and at the genus level, the dominant genus of samples Y1, Y2, Y3 and F2 was Aspergillus, while the dominant genera of samples F1 and F3 were both Rhizopus. This indicated that the microbial growth environment provided by the traditional fermentation method was more stable, and the microbial community structure was more stable, which was more conducive to the stable and controllable fermentation process and fermented products. A total of 155 compounds were identified by compositional analysis, including 70 flavonoids, 38 coumarins, 10 alkaloids, 34 organic acids and 3 other compounds. After fermentation, two new components of ribalinine and pranferin were produced. Different fermentation conditions also brought about differences in chemical composition, multivariate statistical analysis obtained 26 differential compounds under two different fermentation methods, mainly including flavonoids, organic acids and coumarins. Comprehensively, the microbial community structure of samples fermented by the traditional pressure-shelf method of Aurantii Fructus for 14 d was stable, the species richness was high and the overall content of differential compounds was high, which was the optimal processing condition. ConclusionCompared with non-pressure-shelf natural fermentation, the traditional method has obvious advantages in terms of the stability of the microbial community structure and the content of chemical compounds, and the optimal condition is 14 days of fermentation. This study is helpful to promote the quality stability and fermentation bioavailability of fermented products of Aurantii Fructus, as well as to provide an experimental basis for the further improvement of the quality control methods of this variety.
3.Exploration and application of pyrolysis in production of fuel gas from traditional Chinese medicine solid waste under "dual carbon" goals.
Ying-Lei LU ; Xu LONG ; Ke-Ying WANG ; Jing-Li LIU ; Yan-Lei ZHANG ; Yu-Ping TANG
China Journal of Chinese Materia Medica 2025;50(6):1437-1448
Traditional Chinese medicine(TCM) solid waste is characterized by widespread availability, renewability, and substantial production volume. In the context of the "dual carbon" goals, the pyrolysis of TCM solid waste for producing fuel gas for recycling in pharmaceutical production has emerged as a crucial strategy for optimizing the energy structure in the TCM industry and developing renewable energy. This paper comprehensively reviews both internal and external factors that influence the pyrolysis of TCM solid waste. Internal factors encompass moisture content, particle size, ash content, and the morphology of the raw materials, while external factors include pyrolysis conditions, equivalence ratios, types of gasifiers, and gasifying agents. Furthermore, this paper details the challenges associated with the pyrolysis of TCM solid waste, such as the dispersion of feedstocks, the diversity of resources, the complexity of the pyrolysis process, and the variations in gasifier performance. Finally, this paper proposes measures to address these challenges. This paper aims to provide insights into the development of a circular economy for TCM resources and the advancement of low-carbon energy utilization in the TCM industry.
Pyrolysis
;
Carbon/chemistry*
;
Medicine, Chinese Traditional
;
Solid Waste/analysis*
;
Drugs, Chinese Herbal/chemistry*
;
Gases/chemistry*
4.Advances in pathogenesis of asthma airway remodeling and intervention mechanism of traditional Chinese medicine.
Ya-Sheng DENG ; Jiang LIN ; Yu-Jiang XI ; Yan-Ping FAN ; Wen-Yue LI ; Yong-Hui LIU ; Zhao-Bing NI ; Xi MING
China Journal of Chinese Materia Medica 2025;50(8):2050-2070
Asthma, a chronic inflammatory airway disease with a high global prevalence, has a complex pathogenesis, in which airway remodeling plays a key role in the chronicity of the disease. Airway remodeling involves a series of pathophysiological changes, including airway epithelial damage, proliferation of mucous glands and goblet cells, subepithelial fibrosis, proliferation and migration of airway smooth muscle cells, and epithelial-mesenchymal transition. These complex pathological changes significantly increase airway resistance and responsiveness, forming an important pathological basis for refractory asthma. Currently, the regulatory mechanisms of airway remodeling focus on signaling pathways and regulatory targets. The signaling pathways include phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt), nuclear factor-κB(NF-κB), transforming growth factor-β1(TGF-β1)/Smads, and mitogen-activated protein kinase(MAPK). The regulatory targets include microRNAs(miRNAs), competing endogenous RNAs(ceRNAs), long non-coding RNAs(lncRNAs), and circular RNAs(circRNAs). Key proteins involved in these processes include TGF-β1, silencing information regulator 2-related enzyme 1(SIRT1), chitinase 3-like protein 1(YKL-40), and adenosine deaminase-metalloproteinase 33(ADAM33). In recent years, the potential of traditional Chinese medicine in the treatment of asthma has become increasingly evident. Its active ingredients, extracts, and complexes can inhibit airway remodeling in asthma through multiple pathways, demonstrating a variety of effects, including anti-inflammatory actions, inhibition of smooth muscle cell proliferation and migration, regulation of epithelial-mesenchymal transition, attenuation of fibrosis and basement membrane thickening, reduction of mucus secretion, inhibition of vascular remodeling, modulation of immune imbalance, and antioxidative stress. This paper aims to provide an in-depth analysis of the pathogenesis and therapeutic targets of asthma, offering theoretical support and innovative strategies for clinical research and drug development in the treatment of asthma.
Asthma/pathology*
;
Humans
;
Airway Remodeling/drug effects*
;
Drugs, Chinese Herbal/therapeutic use*
;
Animals
;
Signal Transduction/drug effects*
;
Medicine, Chinese Traditional
;
Transforming Growth Factor beta1/metabolism*
5.Mechanism of Quanduzhong Capsules in treating knee osteoarthritis from perspective of spatial heterogeneity.
Zhao-Chen MA ; Zi-Qing XIAO ; Chu ZHANG ; Yu-Dong LIU ; Ming-Zhu XU ; Xiao-Feng LI ; Zhi-Ping WU ; Wei-Jie LI ; Yi-Xin YANG ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(8):2209-2216
This study aims to systematically characterize the targeted effects of Quanduzhong Capsules on cartilage lesions in knee osteoarthritis by integrating spatial transcriptomics data mining and animal experiments validation, thereby elucidating the related molecular mechanisms. A knee osteoarthritis model was established using Sprague-Dawley(SD) rats, via a modified Hulth method. Hematoxylin and eosin(HE) staining was employed to detect knee osteoarthritis-associated pathological changes in knee cartilage. Candidate targets of Quanduzhong Capsules were collected from the HIT 2.0 database, followed by bioinformatics analysis of spatial transcriptomics datasets(GSE254844) from cartilage tissues in clinical knee osteoarthritis patients to identify spatially specific disease genes. Furthermore, a "formula candidate targets-spatially specific genes in cartilage lesions" interaction network was constructed to explore the effects and major mechanisms of Quanduzhong Capsules in distinct cartilage regions. Experimental validation was conducted through immunohistochemistry using animal-derived biospecimens. The results indicated that Quanduzhong Capsules effectively inhibited the degenerative changes in the cartilage of affected joints in rats, which was associated with the regulation of Quanduzhong Capsules on the thioredoxin-interacting protein(TXNIP)-NOD-like receptor family pyrin domain containing 3(NLRP3)-bone morphogenetic protein receptor type 2(BMPR2)-fibronectin 1(FN1)-matrix metallopeptidase 2(MMP2) signal axis in the articular cartilage surface and superficial zones, subsequently inhibiting cartilage matrix degradation leading to oxidative stress and inflammatory diffusion. In summary, this study clarifies the spatially specific targeted effects and protective mechanisms of Quanduzhong Capsules within pathological cartilage regions in knee osteoarthritis, providing theoretical and experimental support for the clinical application of this drug in the targeted therapy on the inflamed cartilage.
Animals
;
Osteoarthritis, Knee/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Rats
;
Male
;
Humans
;
Capsules
;
Female
;
Disease Models, Animal
6.Optimal harvesting period of cultivated Notopterygium incisum based on HPLC specific chromatogram combined with chemometrics and entropy weight-gray correlation analysis.
Jing-Cheng WANG ; Hong-Bing SUN ; Teng LIU ; Wen-Tao ZHU ; Hong-Lan WANG ; Yi ZHOU ; Wei-Yan WANG ; Ping YANG ; Shun-Yuan JIANG
China Journal of Chinese Materia Medica 2025;50(14):3878-3886
To determine the optimal cultivation duration and harvest period for cultivated Notopterygium incisum and promote its industrial development, this study established a characteristic chromatographic profile of cultivated N. incisum and employed chemometrics combined with entropy-weighted grey correlation analysis to assess differences in agronomic traits and quality indicators across different cultivation years and harvest periods. By comparing with reference substances, ten common peaks were identified, including chlorogenic acid, p-coumaric acid, ferulic acid, marmesinin, nodakenin, isochlorogenic acid B, notopterol, phenethyl ferulate, isoimperatorin, and falcarindiol. The similarity between the characteristic chromatographic profiles of N. incisum at different cultivation years and the reference profile was all above 0.932. Principal component analysis(PCA) and orthogonal partial least squares discriminant analysis(OPLS-DA) revealed that the quality of 1-to 3-year-old cultivated N. incisum was highly dispersed and unstable, whereas the quality of 4-year-old cultivated N. incisum remained relatively stable across different harvest periods. This suggests that the accumulation of relevant compounds in the medicinal material had reached a plateau, confirming that the optimal cultivation period for N. incisum is four years. Entropy-weighted grey correlation analysis indicated that the quality of 4-year-old cultivated N. incisum across different harvest periods ranked from highest to lowest as follows: November, December, October, August, July, and September, demonstrating that November is the optimal harvest time. The findings of this study establish the suitable cultivation duration and optimal harvest period for N. incisum, providing a scientific basis for cultivation guidance and quality standardization.
Chromatography, High Pressure Liquid/methods*
;
Apiaceae/chemistry*
;
Entropy
;
Chemometrics/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Principal Component Analysis
;
Quality Control
7.Mechanisms of puerarin-mediated lipid modulation to enhance glucose-lowering effects via hepatic ChREBP/PPARα/PPARγ in vitro.
Can CUI ; Han-Yue XIAO ; Li-Ke YAN ; Zhong-Hua XU ; Wei-Hua LIU ; Hui-Ping LI ; Jun TU
China Journal of Chinese Materia Medica 2025;50(14):3951-3961
This study aims to investigate the in vitro mechanisms underlying the beneficial effects of puerarin on hepatic insulin resistance(IR) based on the carbohydrate response element-binding protein(ChREBP)/peroxisome proliferator-activated receptor(PPAR)α/PPARγ axis involved in glucose and lipid metabolism. An IR-HepG2 cell model was established by treating cells with dexamethasone for 48 h, and the cells were then treated with 10, 20, and 40 μmol·L~(-1) puerarin for 24 h. Glucose levels and output in the extracellular fluid were measured by the glucose oxidase method, while cell viability was assessed by the cell counting kit-8(CCK-8) assay. The adenosine triphosphate(ATP) content and glycogen synthesis were evaluated through chemiluminescence and periodic acid-Schiff staining, respectively. Western blot was employed to quantify the protein levels of forkhead box protein O1(FoxO1), phosphorylated forkhead box protein O1 [p-FoxO1(Ser256)], glucagon, phosphofructokinase, liver type(PFKL), pyruvate kinase L-R(PKLR), pyruvate dehydrogenase complex 1(PDHA1), insulin receptor substrate 2(IRS2), phosphatidylinositol 3-kinase p85(PI3KR1), phosphorylated protein kinase B [p-Akt(Thr308)], glycogen synthase(GYS), glycogen phosphorylase, liver type(PYGL), adiponectin(ADPN), ChREBP, PPARα, and PPARγ. Additionally, the protein levels of acetyl-CoA carboxylase 1(ACC1), phosphorylated ATP citrate lyase [p-ACLY(Ser455)], sterol regulatory element binding protein 1c(SREBP-1c), peroxisome proliferator-activated receptor gamma coactivator 1α(PGC1α), carnitine palmitoyltransferase 1α(CPT1α), and glucagon receptor(GCGR) were also determined. Immunofluorescence was employed to visualize the expression and nuclear location of ChREBP/PPARα/PPARγ. Furthermore, quantitative PCR with the antagonists GW6471 and GW9662 was employed to assess Pparα, Pparγ, and Chrebp. The findings indicated that puerarin effectively reduced both the glucose level and glucose output in the extracellular fluid of IR-HepG2 cells without obvious effect on the cell viability, and it increased intracellular glycogen and ATP levels. Puerarin down-regulated the protein levels of FoxO1 and glucagon while up-regulating the protein levels of p-FoxO1(Ser256), PFKL, PKLR, PDHA1, IRS2, PI3KR1, p-Akt(Thr308), GYS, PYGL, ADPN, ACC1, SREBP-1c, p-ACLY(Ser455), PGC1α, CPT1α, and GCGR in IR-HepG2 cells. Furthermore, puerarin up-regulated both the mRNA and protein levels of ChREBP, PPARα, and PPARγ and promoted the translocation into the nucleus. GW6471 was observed to down-regulate the expression of Pparα while up-regulating the expression of Chrebp and Pparγ. GW9662 down-regulated the expression of Pparγ while up-regulating the expression of Pparα, with no significant effect on Chrebp. In summary, puerarin activated the hepatic ChREBP/PPARα/PPARγ axis, thereby coordinating the glucose and lipid metabolism, promoting the conversion of glucose to lipids to exert the blood glucose-lowering effect.
Isoflavones/pharmacology*
;
Humans
;
PPAR gamma/genetics*
;
Hep G2 Cells
;
Glucose/metabolism*
;
Lipid Metabolism/drug effects*
;
PPAR alpha/genetics*
;
Liver/drug effects*
;
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics*
;
Insulin Resistance
8.Hypoglycemic effect and mechanism of berberine in vitro based on regulation of BMAL1:CLOCK complex involved in hepatic glycolysis, glucose oxidation a nd gluconeogenesis to improve energy metabolism.
Zhong-Hua XU ; Li-Ke YAN ; Wei-Hua LIU ; Can CUI ; Han-Yue XIAO ; Hui-Ping LI ; Jun TU
China Journal of Chinese Materia Medica 2025;50(15):4293-4303
This paper aims to investigate the hypoglycemic effect and mechanism of berberine in improving energy metabolism based on the multi-pathway regulation of brain and muscle aromatic hydrocarbon receptor nuclear translocal protein 1(BMAL1): cyclin kaput complex of day-night spontaneous output cyclin kaput(CLOCK). The dexamethasone-induced hepatic insulin resistance(IR) HepG2 cell model was used; 0.5, 1, 5, 10, 20 μmol·L~(-1) berberine were administered at 15, 18, 21, 24, 30, 36 h. The time-dose effect of glucose content in extracellular fluid was detected by glucose oxidase method. The optimal dosage and time of berberine were determined for the follow-up study. Glucose oxidase method and chemiluminescence method were respectively performed to detect hepatic glucose output and relative content of ATP in cells; Ca~(2+), reactive oxygen species(ROS), mitochondrial structure and membrane potential were detected by fluorescent probes. Moreover, ultraviolet colorimetry method was used to detect the liver type of pyruvate kinase(L-PK) and phosphoenol pyruvate carboxykinase(PEPCK). In addition, pyruvate dehydrogenase E1 subunit α1(PDHA1), phosphate fructocrine-liver type(PFKL), forkhead box protein O1(FoxO1), peroxisome proliferator-activated receptor gamma co-activator 1α(PGC1α), glucose-6-phosphatase(G6Pase), glucagon, phosphorylated nuclear factor-red blood cell 2-related factor 2(p-Nrf2)(Ser40), heme oxygenase 1(HO-1), NAD(P)H quinone oxidoreductase 1(NQO1), fibroblast growth factor 21(FGF21), uncoupled protein(UCP) 1 and UCP2 were detected by Western blot. BMAL1:CLOCK complex was detected by immunofluorescence double-staining method, combined with small molecule inhibitor CLK8. Western blot was used to detect PDHA1, PFKL, FoxO1, PGC1α, G6Pase, glucagon, Nrf2, HO-1, NQO1, FGF21, UCP1 and UCP2 in the CLK8 group. The results showed that berberine downregulated the glucose content in extracellular fluid in IR-HepG2 cells in a time-and dose-dependent manner. Moreover, berberine inhibited hepatic glucose output and reduced intracellular Ca~(2+) and ROS whereas elevated JC-1 membrane potential and improved mitochondrial structure to enhance ATP production. In addition, berberine upregulated the rate-limiting enzymes such as PFKL, L-PK and PDHA1 to promote glycolysis and aerobic oxidation but also downregulated PGC1α, FoxO1, G6Pase, PEPCK and glucagon to inhibit hepatic gluconeogenesis. Berberine not only upregulated p-Nrf2(Ser40), HO-1 and NQO1 to enhance antioxidant capacity but also upregulated FGF21, UCP1 and UCP2 to promote energy metabolism. Moreover, berberine increased BMAL1, CLOCK and nuclear BMAL1:CLOCK complex whereas CLK8 reduced the nuclear BMAL1:CLOCK complex. Finally, CLK8 decreased PDHA1, PFKL, Nrf2, HO-1, NQO1, FGF21, UCP1, UCP2 and increased FoxO1, PGC1α, G6Pase and glucagon compared with the 20 μmol·L~(-1) berberine group. BMAL1:CLOCK complex inhibited gluconeogenesis, promoted glycolysis and glucose aerobic oxidation pathways, improved the reduction status within mitochondria, protected mitochondrial structure and function, increased ATP energy storage and promoted energy consumption in IR-HepG2 cells. These results suggested that berberine mediated BMAL1:CLOCK complex to coordinate the regulation of hepatic IR cells to improve energy metabolism in vitro.
Humans
;
Berberine/pharmacology*
;
Gluconeogenesis/drug effects*
;
Hep G2 Cells
;
Glucose/metabolism*
;
Liver/drug effects*
;
Energy Metabolism/drug effects*
;
Hypoglycemic Agents/pharmacology*
;
ARNTL Transcription Factors/genetics*
;
Glycolysis/drug effects*
;
Oxidation-Reduction/drug effects*
9.Antidepressant effects of Ziziphi Spinosae Semen extract on depressive-like behaviors in sleep deprivation rats based on integrated serum metabolomics and gut microbiota.
Liang-Lei SONG ; Ya-Yu SUN ; Ze-Jia NIU ; Jia-Ying LIU ; Xiang-Ping PEI ; Yan YAN ; Chen-Hui DU
China Journal of Chinese Materia Medica 2025;50(16):4510-4524
Based on serum metabolomics and gut microbiota technology, this study explores the effects and mechanisms of the water extract of Ziziphi Spinosae Semen(SZRW) and the petroleum ether extract of Ziziphi Spinosae Semen(SZRO) in improving depressive-like behaviors induced by sleep deprivation. A modified multi-platform water environment method was employed to establish a rat model of sleep deprivation. Depressive-like behaviors in rats were assessed through the sucrose preference test and forced swim test. The expression of barrier proteins, such as Occludin, in the colon was determined by immunofluorescence. UPLC-Q-Orbitrap MS was utilized to analyze the serum metabolic profiles of sleep-deprived rats, screen for differential metabolites, and analyze metabolic pathways. The diversity of the gut microbiota was detected using 16S rRNA gene sequencing. Spearman correlation coefficient analysis was conducted to assess the correlation between differential metabolites and gut microbiota. The results indicated that SZRO significantly increased the sucrose preference index and decreased the immobility time in the forced swim test in rats. A total of 34 differential metabolites were identified through serum metabolomics. SZRW and SZRO shared five metabolic pathways, including phenylalanine metabolism. SZRW uniquely featured taurine and hypotaurine metabolism, while SZRO uniquely featured linoleic acid metabolism and tyrosine metabolism. Correlation analysis revealed that SZRW could upregulate the abundance of Bilophila, promoting the production of indole-3-propionic acid and subsequently upregulating the expression levels of intestinal tight junction proteins such as ZO-1, Occludin, and Claudin-1. SZRO could indirectly influence metabolic pathways such as arginine metabolism and linoleic acid metabolism by upregulating the abundance of gut microbiota such as Coprococcus and Eubacterium species. Both SZRW and SZRO can regulate endogenous metabolism, including amino acids, energy, and lipids, alter the gut microbiota microecology, and improve depressive-like behaviors. SZRO demonstrated superior effects in regulating metabolic pathways and gut microbiota structure compared to SZRW. The findings of this study provide a scientific basis for elucidating the pharmacodynamic material basis of Ziziphi Spinosae Semen.
Animals
;
Rats
;
Gastrointestinal Microbiome/drug effects*
;
Male
;
Metabolomics
;
Drugs, Chinese Herbal/administration & dosage*
;
Depression/blood*
;
Rats, Sprague-Dawley
;
Sleep Deprivation/complications*
;
Ziziphus/chemistry*
;
Antidepressive Agents/administration & dosage*
;
Behavior, Animal/drug effects*
;
Humans
10.GGN repeat length of the androgen receptor gene is associated with antral follicle count in Chinese women undergoing controlled ovarian stimulation.
Xinyan LIU ; Qi FAN ; Mingfen DENG ; Yan XU ; Jing GUO ; Ping CAO ; Canquan ZHOU ; Yanwen XU
Journal of Southern Medical University 2025;45(2):213-222
OBJECTIVES:
To evaluate the association of GGN repeat polymorphism of androgen receptor (AR) with ovarian reserve and ovarian response in controlled ovarian stimulation (COS).
METHODS:
This genetic association study was conducted among a total of 361 women aged ≤40 years with basal FSH≤12 U/L undergoing the GnRH-agonist long protocol for COS in a university-affiliated IVF center. GGN repeat in the AR gene was analyzed with Sanger sequencing. The primary endpoint was the number of antral follicle counts (AFCs), and the secondary endpoints were stimulation days, total dose of gonadotropin (Gn) used, total number of retrieved oocytes, ovarian sensitivity index, and follicular output rate.
RESULTS:
The GGN repeat in exon 1 of the AR gene ranged from 13 to 24, and the median repeat length was 22. Based on the genotypes (S for GGN repeats <22, L for GGN repeats ≥22), the patients were divided into 3 groups: SS, SL, and LL. Generalized regression analysis indicated that the number of AFCs in group SS was significantly lower than those in group SL (adjusted β=1.8, 95% CI: 0.2-3.4, P=0.024) and group LL (adjusted β=1.5, 95% CI: 0.2-2.7, P=0.021). No significant difference was observed in the number of AFCs between group SL and group LL (P>0.05). Generalized regression analysis indicated no significant differences in ovarian stimulation parameters among the 3 groups, either before or after adjusting for confounding factors (P>0.05).
CONCLUSIONS
GGN repeat length on the AR gene is associated with AFC but not with ovarian response in Chinese women, indicating that AR gene polymorphisms may affect ovarian reserve.
Adult
;
Female
;
Humans
;
Genotype
;
Ovarian Follicle/cytology*
;
Ovarian Reserve/genetics*
;
Ovulation Induction/methods*
;
Polymorphism, Genetic
;
Receptors, Androgen/genetics*
;
East Asian People/genetics*

Result Analysis
Print
Save
E-mail