1.Biomimetic nanoparticle delivery systems b ased on red blood cell membranes for disease treatment
Chen-xia GAO ; Yan-yu XIAO ; Yu-xue-yuan CHEN ; Xiao-liang REN ; Mei-ling CHEN
Acta Pharmaceutica Sinica 2025;60(2):348-358
Nanoparticle delivery systems have good application prospects in the field of precision therapy, but the preparation process of nanomaterial has problems such as short
2.Mechanisms by which microgravity causes osteoporosis
Dejian XIANG ; Xiaoyuan LIANG ; Shenghong WANG ; Changshun CHEN ; Cong TIAN ; Zhenxing YAN ; Bin GENG ; Yayi XIA
Chinese Journal of Tissue Engineering Research 2025;29(10):2132-2140
BACKGROUND:The imbalance between bone resorption and bone formation in microgravity environments leads to significant bone loss in astronauts.Current research indicates that bone loss under microgravity conditions is the result of the combined effects of various cells,tissues,and systems. OBJECTIVE:To review different biological effects of microgravity on various cells,tissues,or systems,and summarize the mechanisms by which microgravity leads to the development of osteoporosis. METHODS:Databases such as PubMed,Web of Science,and the Cochrane Database were searched for relevant literature from 2000 to 2023.The inclusion criteria were all articles related to tissue engineering studies and basic research on osteoporosis caused by microgravity.Ultimately,85 articles were included for review. RESULTS AND CONCLUSION:(1)In microgravity environment,bone marrow mesenchymal stem cells tend to differentiate more into adipocytes rather than osteoblasts,and hematopoietic stem cells in this environment are more inclined to differentiate into osteoclasts,reducing differentiation into the erythroid lineage.At the same time,microgravity inhibits the proliferation and differentiation of osteoblasts,promotes apoptosis of osteoblasts,alters cell morphology,and reduces the mineralization capacity of osteoblasts.Microgravity significantly increases the number and activity of osteoclasts.Microgravity also hinders the differentiation of osteoblasts into osteocytes and promotes the apoptosis of osteocytes.(2)In a microgravity environment,the body experiences changes such as skeletal muscle atrophy,microvascular remodeling,bone microcirculation disorders,and endocrine disruption.These changes lead to mechanical unloading in the bone microenvironment,insufficient blood perfusion,and calcium cycle disorders,which significantly impact the development of osteoporosis.(3)At present,the mechanism by which microgravity causes osteoporosis is relatively complex.A deeper study of these physiological mechanisms is crucial to ensuring the health of astronauts during long-term space missions,and provides a theoretical basis for the prevention and treatment of osteoporosis.
3.Guidelines for the diagnosis and treatment of prurigo nodularis.
Li ZHANG ; Qingchun DIAO ; Xia DOU ; Hong FANG ; Songmei GENG ; Hao GUO ; Yaolong CHEN ; Chao JI ; Chengxin LI ; Linfeng LI ; Jie LI ; Jingyi LI ; Wei LI ; Zhiming LI ; Yunsheng LIANG ; Jianjun QIAO ; Zhiqiang SONG ; Qing SUN ; Juan TAO ; Fang WANG ; Zhiqiang XIE ; Jinhua XU ; Suling XU ; Hongwei YAN ; Xu YAO ; Jianzhong ZHANG ; Litao ZHANG ; Gang ZHU ; Fei HAO ; Xinghua GAO
Chinese Medical Journal 2025;138(22):2859-2861
4.Dehydrodiisoeugenol resists H1N1 virus infection via TFEB/autophagy-lysosome pathway.
Zhe LIU ; Jun-Liang LI ; Yi-Xiang ZHOU ; Xia LIU ; Yan-Li YU ; Zheng LUO ; Yao WANG ; Xin JIA
China Journal of Chinese Materia Medica 2025;50(6):1650-1658
The present study delves into the cellular mechanisms underlying the antiviral effects of dehydrodiisoeugenol(DEH) by focusing on the transcription factor EB(TFEB)/autophagy-lysosome pathway. The cell counting kit-8(CCK-8) was utilized to assess the impact of DEH on the viability of human non-small cell lung cancer cells(A549). The inhibitory effect of DEH on the replication of influenza A virus(H1N1) was determined by real-time quantitative polymerase chain reaction(RT-qPCR). Western blot was employed to evaluate the influence of DEH on the expression level of the H1N1 virus nucleoprotein(NP). The effect of DEH on the fluorescence intensity of NP was examined by the immunofluorescence assay. A mouse model of H1N1 virus infection was established via nasal inhalation to evaluate the therapeutic efficacy of 30 mg·kg~(-1) DEH on H1N1 virus infection. RNA sequencing(RNA-seq) was performed for the transcriptional profiling of mouse embryonic fibroblasts(MEFs) in response to DEH. The fluorescent protein-tagged microtubule-associated protein 1 light chain 3(LC3) was used to assess the autophagy induced by DEH. Western blot was employed to determine the effect of DEH on the autophagy flux of LC3Ⅱ/LC3Ⅰ under viral infection conditions. Lastly, the role of TFEB expression in the inhibition of DEH against H1N1 infection was evaluated in immortalized bone marrow-derived macrophage(iBMDM), both wild-type and TFEB knockout. The results revealed that the half-maximal inhibitory concentration(IC_(50)) of DEH for A549 cells was(87.17±0.247)μmol·L~(-1), and DEH inhibited H1N1 virus replication in a dose-dependent manner in vitro. Compared with the H1N1 virus-infected mouse model, the treatment with DEH significantly improved the body weights and survival time of mice. DEH induced LC3 aggregation, and the absence of TFEB expression in iBMDM markedly limited the ability of DEH to counteract H1N1 virus replication. In conclusion, DEH exerts its inhibitory activity against H1N1 infection by activating the TFEB/autophagy-lysosome pathway.
Influenza A Virus, H1N1 Subtype/genetics*
;
Animals
;
Autophagy/drug effects*
;
Humans
;
Mice
;
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics*
;
Influenza, Human/metabolism*
;
Lysosomes/metabolism*
;
Orthomyxoviridae Infections/genetics*
;
Eugenol/pharmacology*
;
Antiviral Agents/pharmacology*
;
Virus Replication/drug effects*
;
A549 Cells
;
Male
5.A novel anti-ischemic stroke candidate drug AAPB with dual effects of neuroprotection and cerebral blood flow improvement.
Jianbing WU ; Duorui JI ; Weijie JIAO ; Jian JIA ; Jiayi ZHU ; Taijun HANG ; Xijing CHEN ; Yang DING ; Yuwen XU ; Xinglong CHANG ; Liang LI ; Qiu LIU ; Yumei CAO ; Yan ZHONG ; Xia SUN ; Qingming GUO ; Tuanjie WANG ; Zhenzhong WANG ; Ya LING ; Wei XIAO ; Zhangjian HUANG ; Yihua ZHANG
Acta Pharmaceutica Sinica B 2025;15(2):1070-1083
Ischemic stroke (IS) is a globally life-threatening disease. Presently, few therapeutic medicines are available for treating IS, and rt-PA is the only drug approved by the US Food and Drug Administration (FDA) in the US. In fact, many agents showing excellent neuroprotection but no blood flow-improving activity in animals have not achieved ideal clinical efficacy, while thrombolytic drugs only improving blood flow without neuroprotection have limited their wider application. To address these challenges and meet the huge unmet clinical need, we have designed and identified a novel compound AAPB with dual effects of neuroprotection and cerebral blood flow improvement. AAPB significantly reduced cerebral infarction and neural function deficit in tMCAO rats, pMCAO rats, and IS rhesus monkeys, as well as displayed exceptional safety profiles and excellent pharmacokinetic properties in rats and dogs. AAPB has now entered phase I of clinical trials fighting IS in China.
6.Association of Body Mass Index with All-Cause Mortality and Cause-Specific Mortality in Rural China: 10-Year Follow-up of a Population-Based Multicenter Prospective Study.
Juan Juan HUANG ; Yuan Zhi DI ; Ling Yu SHEN ; Jian Guo LIANG ; Jiang DU ; Xue Fang CAO ; Wei Tao DUAN ; Ai Wei HE ; Jun LIANG ; Li Mei ZHU ; Zi Sen LIU ; Fang LIU ; Shu Min YANG ; Zu Hui XU ; Cheng CHEN ; Bin ZHANG ; Jiao Xia YAN ; Yan Chun LIANG ; Rong LIU ; Tao ZHU ; Hong Zhi LI ; Fei SHEN ; Bo Xuan FENG ; Yi Jun HE ; Zi Han LI ; Ya Qi ZHAO ; Tong Lei GUO ; Li Qiong BAI ; Wei LU ; Qi JIN ; Lei GAO ; He Nan XIN
Biomedical and Environmental Sciences 2025;38(10):1179-1193
OBJECTIVE:
This study aimed to explore the association between body mass index (BMI) and mortality based on the 10-year population-based multicenter prospective study.
METHODS:
A general population-based multicenter prospective study was conducted at four sites in rural China between 2013 and 2023. Multivariate Cox proportional hazards models and restricted cubic spline analyses were used to assess the association between BMI and mortality. Stratified analyses were performed based on the individual characteristics of the participants.
RESULTS:
Overall, 19,107 participants with a sum of 163,095 person-years were included and 1,910 participants died. The underweight (< 18.5 kg/m 2) presented an increase in all-cause mortality (adjusted hazards ratio [ aHR] = 2.00, 95% confidence interval [ CI]: 1.66-2.41), while overweight (≥ 24.0 to < 28.0 kg/m 2) and obesity (≥ 28.0 kg/m 2) presented a decrease with an aHR of 0.61 (95% CI: 0.52-0.73) and 0.51 (95% CI: 0.37-0.70), respectively. Overweight ( aHR = 0.76, 95% CI: 0.67-0.86) and mild obesity ( aHR = 0.72, 95% CI: 0.59-0.87) had a positive impact on mortality in people older than 60 years. All-cause mortality decreased rapidly until reaching a BMI of 25.7 kg/m 2 ( aHR = 0.95, 95% CI: 0.92-0.98) and increased slightly above that value, indicating a U-shaped association. The beneficial impact of being overweight on mortality was robust in most subgroups and sensitivity analyses.
CONCLUSION
This study provides additional evidence that overweight and mild obesity may be inversely related to the risk of death in individuals older than 60 years. Therefore, it is essential to consider age differences when formulating health and weight management strategies.
Humans
;
Body Mass Index
;
China/epidemiology*
;
Male
;
Female
;
Middle Aged
;
Prospective Studies
;
Rural Population/statistics & numerical data*
;
Aged
;
Follow-Up Studies
;
Adult
;
Mortality
;
Cause of Death
;
Obesity/mortality*
;
Overweight/mortality*
7.Correlation between Combined Urinary Metal Exposure and Grip Strength under Three Statistical Models: A Cross-sectional Study in Rural Guangxi
Jian Yu LIANG ; Hui Jia RONG ; Xiu Xue WANG ; Sheng Jian CAI ; Dong Li QIN ; Mei Qiu LIU ; Xu TANG ; Ting Xiao MO ; Fei Yan WEI ; Xia Yin LIN ; Xiang Shen HUANG ; Yu Ting LUO ; Yu Ruo GOU ; Jing Jie CAO ; Wu Chu HUANG ; Fu Yu LU ; Jian QIN ; Yong Zhi ZHANG
Biomedical and Environmental Sciences 2024;37(1):3-18
Objective This study aimed to investigate the potential relationship between urinary metals copper (Cu), arsenic (As), strontium (Sr), barium (Ba), iron (Fe), lead (Pb) and manganese (Mn) and grip strength. Methods We used linear regression models, quantile g-computation and Bayesian kernel machine regression (BKMR) to assess the relationship between metals and grip strength.Results In the multimetal linear regression, Cu (β=-2.119), As (β=-1.318), Sr (β=-2.480), Ba (β=0.781), Fe (β= 1.130) and Mn (β=-0.404) were significantly correlated with grip strength (P < 0.05). The results of the quantile g-computation showed that the risk of occurrence of grip strength reduction was -1.007 (95% confidence interval:-1.362, -0.652; P < 0.001) when each quartile of the mixture of the seven metals was increased. Bayesian kernel function regression model analysis showed that mixtures of the seven metals had a negative overall effect on grip strength, with Cu, As and Sr being negatively associated with grip strength levels. In the total population, potential interactions were observed between As and Mn and between Cu and Mn (Pinteractions of 0.003 and 0.018, respectively).Conclusion In summary, this study suggests that combined exposure to metal mixtures is negatively associated with grip strength. Cu, Sr and As were negatively correlated with grip strength levels, and there were potential interactions between As and Mn and between Cu and Mn.
8.Research status of Chinese medicine in improving diabetic cardiomyopathy by regulating cellular autophagy
Lei LIU ; Li-Xia YANG ; Yong-Lin LIANG ; Xiang-Dong ZHU ; Yan-Kui GAO
The Chinese Journal of Clinical Pharmacology 2024;40(10):1530-1534
The pathogenesis of diabetic cardiomyopathy(DCM)is complex.Autophagy plays a pivotal role in the development of DCM,and whether its level is stable or not is closely related to the development of the course of DCM.Numerous active components found in traditional Chinese medicines and compound formulations have demonstrated the ability to modulate autophagy levels.These interventions occur through various mechanisms,such as hypoglycemic,anti-apoptotic,anti-inflammatory,and anti-oxidative stress pathways.By mitigating autophagy-induced myocardial damage,enhancing cardiac function,and slowing the progression of DCM,these compounds offer promising avenues for DCM management.This paper aims to consolidate and present research findings from the last 5 years.Our goal is to provide valuable insights and references for the research,development,and clinical application of Chinese medicine in the context of combating DCM.
9.Effects of Bushen Huoxue formula on interleukin-17 in rats with recurrent spontaneous abortion
Yao PENG ; Jin CHEN ; Yan LIANG ; Qi YANG ; Li-Mei SHEN ; Xiao-Jian XIA
The Chinese Journal of Clinical Pharmacology 2024;40(13):1928-1932
Objective To observe the effect of Bushen Huoxue formula on interleukin-17(IL-17)in rats with recurrent spontaneous abortion(RSA).Methods RS A model rats were constructed by intraperitoneal injection of estradiol benzoate.Forty RSA model rats were randomly divided into model group,control group and experimental-L,-H groups,with 10 rats per group.Another 10 healthy pregnant rats were set as blank group.The experimental-L,-H groups were given 7.77 and 15.54 g·kg-1 of Bushen Huoxue formula solution by gavage.The control group was given 2.10 mg·kg-1of dydrogesterone solution by gavage.The blank group and the model group were given equal amount of 0.9%NaCl by gavage.The dose of administration for the five groups was 10 mL·kg-1,once a day,for 9 days.The number of live fetuses,embryo loss,and embryo loss rate in each group were observed.The proportion of Th 17 cells in the peripheral blood was detected by flow cytometry.The expression levels of interleukin-6(IL-6),IL-17 and IL-23 proteins in the decidual tissues were detected by Western blotting.Results The number of live fetuses in the experimental-H,control,model and blank groups were 11.50±2.84,11.50±3.10,6.30±1.25 and 12.50±3.24;the number of embryos lost were 1.80±0.42,1.90±0.57,4.90±1.37 and 0;the rates of embryo loss were(14.01±4.52)%,(14.79±6.06)%,(43.50±9.49)%and 0;the proportions of Th17 cells in the peripheral blood were(3.12±0.47)%,(3.10±0.59)%,(5.31±1.16)%and(2.54±0.71)%;the relative expression levels of IL-6 protein were 0.19±0.04,0.18±0.05,0.85±0.16 and 0.11±0.03;the relative expression levels of IL-17 protein were 0.28±0.04,0.29±0.05,0.84±0.12 and 0.09±0.01;the relative expression levels of IL-23 protein were 0.35±0.04,0.34±0.06,0.90±0.11 and 0.08±0.01,respectively.Comparing experimental-H group and model group,comparing control group and blank group,the above indexes were statistically significant(all P<0.05).Conclusion Bushen Huoxue formula can reduce embryo loss,improve placental tissue pathology,reduce Th 17 cell proportion and its related cytokines IL-6,IL-17,IL-23 expression in rats with RSA.
10.Mechanism and research progress of S100A8/A9 in the microenvironment before high-risk tumor metastasis
Hai-Xia MING ; Zhao-Hua LIU ; Yan-Jun WANG ; Ming SHEN ; Yan-Wen CHEN ; Yang LI ; Ling-Ling YANG ; Qian-Kun LIANG
The Chinese Journal of Clinical Pharmacology 2024;40(13):1991-1995
S100 calc-binding protein A8/A9(S100A8/A9)can induce the migration of primary tumor cells to distant target organs by binding multiple channel proteins,promote the formation of tumor metastasis microenvironment,and play an important role in the immune and inflammatory response of the body.It provides a new target and idea for the prevention and treatment of tumor metastasis and invasion.This paper mainly reviewed the expression and mechanism of S100A8/A9 on related channel proteins in a variety of high incidence tumors,in order to provide a new strategy for tumor prevention,diagnosis and treatment.

Result Analysis
Print
Save
E-mail