1.Impact of the number of microsatellite markers on the analysis of population genetic diversity of Schistosoma japonicum
Juan LONG ; Lang MA ; Hongying ZONG ; Zhipeng ZHOU ; Hao YAN ; Qinping ZHAO
Chinese Journal of Schistosomiasis Control 2025;37(3):239-246
Objective To examine the impact of different numbers of microsatellite markers on the analysis of population genetic diversity of Schistosoma japonicum, so as to provide insights into studies on the population genetic diversity of S. japonicum. Methods Oncomelania hupensis snails were collected from a wasteland in Gong’an County, Hubei Province, and 37 S. japonicum-infected O. hupensis snails were identified using the cercarial shedding method. A single cercaria released from each S. japonicum-infected O. hupensis snail was collected, and 10 cercariae were randomly collected from DNA extraction. Nine previously validated microsatellite loci and 15 additional microsatellite loci screened from literature review and the GenBank database and confirmed with stable amplification efficiency were selected as molecular markers. Genomic DNA from cercariae was subjected to three multiplex PCR amplifications of microsatellite markers with the Type-it Microsatellite PCR kit, and genotyped using capillary electrophoresis. The population genetic diversity of S. japonicum cercariae DNA was analyzed with observed number of alleles (Na), effective number of alleles (Ae), observed heterozygosity (Ho), expected heterozygosity (He), and polymorphism information content (PIC), and tested for Hardy-Weinberg equilibrium (HWE) and linkage disequilibrium (LD). To further investigate the impact of the number of microsatellite loci on the population genetic diversity of S. japonicum, the number of microsatellite markers was sequentially assigned from 1 to 24, and the mean and standard deviation of Na were calculated for S. japonicum populations at different locus numbers. In addition, the coefficient of variation (CV) of allelic number (defined as the ratio of the standard deviation to the mean) was determined, and the variation in Na with increasing microsatellite locus numbers was analyzed. Results Genomic DNA from 345 S. japonicum cercariae was selected for genotyping of 24 microsatellite markers, and all 24 microsatellite loci met linkage equilibrium (standardized linkage disequilibrium coefficient D′ < 0.7, r2 < 0.3) and deviated from Hardy-Weinberg equilibrium (P < 0.001). The mean Na, Ae, Ho and He were 27.46 ± 2.18, 12.46 ± 0.95, 0.46 ± 0.03, and 0.91 ± 0.01 for 24 microsatellite loci in S. japonicum cercarial populations, respectively, and PIC ranged from 0.85 to 0.96, indicating high genome-wide representativeness of 24 microsatellite loci. The mean value of Na-Ae was higher in genotyping with 9 previously validated microsatellite loci (19.88 ± 8.43) than with all 24 loci (14.99 ± 8.09). As the number of microsatellite loci increased, the mean Na showed no significant variation; however, the standard deviation gradually decreased. Notably, if the locus number reached 18 or more, the variation in the standard deviation of Na remarkably reduced. In addition, the standard deviation of Na at 18 loci was less than 5% of the mean Na at 24 loci, with a CV of 4.6%. Conclusions The number of microsatellite loci significantly affects the population genetic diversity analysis of S. japonicum. Eighteen or more microsatellite loci are recommended for analysis of the population genetic diversity of S. japonicum under the current conditions of low-prevalence infection and unbalanced genetic distribution of S. japonicum.
2.Effect and mechanism of combined use of active components of Buyang Huanwu Decoction in ameliorating neuronal injury induced by OGD/R.
Cun-Yan DAN ; Meng-Wei RONG ; Xiu LOU ; Tian-Qing XIA ; Bao-Guo XIAO ; Hong GUO ; Cun-Gen MA ; Li-Juan SONG
China Journal of Chinese Materia Medica 2025;50(4):1098-1110
Buyang Huanwu Decoction(BYHWD), as one of the classic formulas in traditional Chinese medicine(TCM) for the treatment of cerebral ischemic stroke(CIS), has demonstrated definite effects in clinical practice. However, the material basis and mechanism of treatment have not been systematically elucidated. This study employed network pharmacology and molecular docking to analyze the potential targets and mechanisms of blood-and brain-penetrating active components of BYHWD in reducing cell apoptosis in CIS. Cell experiments were then carried out to validate the prediction results. In the experiments, five active components including hydroxysafflor yellow A( HSYA), tetramethylpyrazine( TMP), astragaloside Ⅳ( AS-Ⅳ), amygdalin( AMY), and paeoniflorin(PF) were selected to explore the pharmacological effects of BYHWD. HT22 cells were treated with BYHWD, and the cell counting kit-8(CCK-8) method was employed to examine the toxic and side effects of BYHWD. A cell model of oxygen-glucose deprivation/reoxygenation( OGD/R) was constructed, with apoptosis and pyroptosis as the main screening indicators. The levels of lactate dehydrogenase(LDH) and glutathione(GSH) were measured to assess the cell membrane integrity. Flow cytometry was employed to detect apoptosis, and the activities of caspase-3 and caspase-1 were measured to clarify the status of apoptosis and pyroptosis. ELISA was employed to determine the levels of interleukin(IL)-1β and IL-18 to confirm pyroptosis. HSYA and AMY were identified in this study as the active components regulating apoptosis and pyroptosis. TUNEL was employed to detect the apoptosis rate, and Western blot was employed to determine the expression levels of apoptosis-related proteins B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), and caspase-3, which confirmed that the anti-apoptotic effect of the combined component group was superior to that of the single component groups. The molecular docking results revealed strong binding affinity of HSYA and AMY with SDF-1α and CXCR4.AMD3100, a selective antagonist of CXCR4, was then used for intervention. The results of Western blot showed alterations in the expression levels of apoptosis-associated proteins, SDF-1α, and CXCR4. In conclusion, HSYA and AMY influence cellular apoptosis by modulating the SDF-1α/CXCR4 signaling cascade.
Drugs, Chinese Herbal/chemistry*
;
Apoptosis/drug effects*
;
Animals
;
Neurons/cytology*
;
Mice
;
Molecular Docking Simulation
;
Cell Line
;
Glucose/metabolism*
;
Humans
;
Neuroprotective Agents/pharmacology*
3.Effects of combined use of active ingredients in Buyang Huanwu Decoction on oxygen-glucose deprivation/reglucose-reoxygenation-induced inflammation and oxidative stress of BV2 cells.
Tian-Qing XIA ; Ying CHEN ; Jian-Lin HUA ; Qin SU ; Cun-Yan DAN ; Meng-Wei RONG ; Shi-Ning GE ; Hong GUO ; Bao-Guo XIAO ; Jie-Zhong YU ; Cun-Gen MA ; Li-Juan SONG
China Journal of Chinese Materia Medica 2025;50(14):3835-3846
This study aims to explore the effects and action mechanisms of the active ingredients in Buyang Huanwu Decoction(BYHWD), namely tetramethylpyrazine(TMP) and hydroxy-safflor yellow A(HSYA), on oxygen-glucose deprivation/reglucose-reoxygenation(OGD/R)-induced inflammation and oxidative stress of microglia(MG). Network pharmacology was used to screen the effective monomer ingredients of BYHWD and determine the safe concentration range for each component. Inflammation and oxidative stress models were established to further screen the best ingredient combination and optimal concentration ratio with the most effective anti-inflammatory and antioxidant effects. OGD/R BV2 cell models were constructed, and BV2 cells in the logarithmic growth phase were divided into a normal group, a model group, an HSYA group, a TMP group, and an HSYA + TMP group. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of inflammatory cytokines such as interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6). Oxidative stress markers, including superoxide dismutase(SOD), nitric oxide(NO), and malondialdehyde(MDA), were also measured. Western blot was used to analyze the protein expression of both inflammation-related pathway [Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)] and oxidative stress-related pathway [nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)]. Immunofluorescence was used to assess the expression of proteins such as inducible nitric oxide synthase(iNOS) and arginase-1(Arg-1). The most effective ingredients for anti-inflammatory and antioxidant effects in BYHWD were TMP and HSYA. Compared to the normal group, the model group showed significantly increased levels of IL-1β, TNF-α, IL-6, NO, and MDA, along with significantly higher protein expression of NF-κB, TLR4, Nrf2, and HO-1 and significantly lower SOD levels. The differences between the two groups were statistically significant. Compared to the model group, both the HSYA group and the TMP group showed significantly reduced levels of IL-1β, TNF-α, IL-6, NO, and MDA, lower expression of NF-κB and TLR4 proteins, higher levels of SOD, and significantly increased protein expression of Nrf2 and HO-1. Additionally, the expression of the M1-type MG marker iNOS was significantly reduced, while the expression of the M2-type MG marker Arg-1 was significantly increased. The results of the HSYA group and the TMP group had statistically significant differences from those of the model group. Compared to the HSYA group and the TMP group, the HSYA + TMP group showed further significant reductions in IL-1β, TNF-α, IL-6, NO, and MDA levels, along with significant reductions in NF-κB and TLR4 protein expression, an increase in SOD levels, and elevated Nrf2 and HO-1 protein expression. Additionally, the expression of the M1-type MG marker iNOS was reduced, while the M2-type MG marker Arg-1 expression increased significantly in the HSYA + TMP group compared to the TMP or HSYA group. The differences in the results were statistically significant between the HSYA + TMP group and the TMP or HSYA group. The findings indicated that the combined use of HSYA and TMP, the active ingredients of BYHWD, can effectively inhibit OGD/R-induced inflammation and oxidative stress of MG, showing superior effects compared to the individual use of either component.
Oxidative Stress/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Mice
;
Glucose/metabolism*
;
Cell Line
;
Inflammation/genetics*
;
Oxygen/metabolism*
;
Pyrazines/pharmacology*
;
Microglia/metabolism*
;
NF-E2-Related Factor 2/immunology*
;
NF-kappa B/immunology*
;
Toll-Like Receptor 4/immunology*
;
Anti-Inflammatory Agents/pharmacology*
;
Humans
4.Correlation between Serum FGF-23, HPSE Levels and Early Renal Impairment in Patients with Multiple Myeloma.
Li-Fang MA ; Yan YUN ; Yan-Qi LIU ; Xue-Qin BAI ; Wen-Juan NI ; Zhi-Qin LI ; Yan LU ; Zhe LI ; Jing LI ; Guo-Rong JIA
Journal of Experimental Hematology 2025;33(3):822-827
OBJECTIVE:
To investigate the relationship between serum levels of fibroblast growth factor-23 (FGF-23), heparanase (HPSE) and early renal impairment (RI) in patients with multiple myeloma (MM).
METHODS:
A retrospective analysis was conducted on the clinical data of 125 MM patients who were initially diagnosed in the Department of Hematology of the First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology from June 2020 to June 2023. The patients were divided into RI group (>176.80 μmol/L) and non-RI group (≤176.80 μmol/L) based on their serum creatinine levels when diagnosed. The baseline data and laboratory indexes of the two groups were compared. The relationship between serum FGF-23, HPSE and early RI in MM patients was analyzed.
RESULTS:
Among 125 newly diagnosed MM patients, 33 cases developed early RI, accounting for 26.40%. The proportion of light chain type, blood urea nitrogen (BUN), blood uric acid, lactate dehydrogenase, FGF-23, and HPSE levels in RI group were higher than those in non-RI group (all P <0.05). There was no statistical significant difference in other data between the two groups (P >0.05). Multivariate logistic regression analysis showed that BUN, FGF-23 and HPSE were associated with early RI in MM patients (all P <0.05). The serum FGF-23 level was divided into Q1-Q4 groups by quartile, and the serum HPSE level was divided into q1-q4 groups. The correlation analysis showed that with the increase of serum FGF-23 and HPSE levels, the incidence of early RI increased (r =0.668, 0.592). Furthermore, logistic regression analysis showed that after controlling for confounding factors, elevated levels of serum FGF-23 and HPSE were still influencing factors for early RI in MM patients (OR>1, P <0.05). According to Pearson's linear correlation test, there was a positive correlation between serum FGF-23 level and HPSE level (r =0.373).
CONCLUSION
There is a certain correlation between serum levels of FGF-23, HPSE and early RI in MM patients, and the incidence of early RI is higher in patients with abnormally high levels of both.
Humans
;
Multiple Myeloma/complications*
;
Fibroblast Growth Factor-23
;
Retrospective Studies
;
Fibroblast Growth Factors/blood*
;
Glucuronidase/blood*
;
Male
;
Female
;
Middle Aged
;
Renal Insufficiency/blood*
;
Aged
6.MYCN-Mediated Transcriptional Activation of IDH2 Enhances Proliferation, Migration, and Invasion in Cervical Squamous Cell Carcinoma through the HIF1-α Pathway.
Xiao Juan LIU ; Hui MA ; Xiao Yan LI ; Chun Xing MA ; Li Sha SHU ; Hui Ying ZHANG
Biomedical and Environmental Sciences 2025;38(8):1003-1008
7.Exploration on bioactive equivalent combinatorial components of Xiaoke formula and its mechanism based on insulin resistance mice
Jian ZHANG ; Wen-juan MA ; Lin-jie DONG ; Jiang-lan LONG ; Yu ZHANG ; Dan YAN
Acta Pharmaceutica Sinica 2024;59(6):1698-1705
Xiaoke formula (XKF) is a classic formula for the treatment of insulin resistance (IR), but there is still unclear on bioactive equivalent combinatorial components (BECC) of XKF. In this study, based on the previous research of our team, three components, berberine, astragaloside IV and chlorogenic acid, were selected as the BECC of XKF, and their efficacy and mechanism were investigated. A high-fat diet-induced IR mouse model was used to detect blood glucose, insulin sensitivity, lipid metabolism, immune & inflammatory factors, etc., and staining of pathology sections was used to detect histopathological changes. Network pharmacology was used to predict the potential targets and signaling pathways of XKF and its BECC, and the results of the network were verified by Western blot. The animal welfare and experimental procedures followed the regulations of the Laboratory Animal Ethics Committee of Beijing MDKN Biotech Company (MDKN-2023-019). The results showed that BECC, which was composed of berberine, astragaloside IV and chlorogenic acid in the ratio of the original formula of XKF, was comparable to XKF in improving the glycemia, insulin sensitivity, histopathological damage, dyslipidemia, and immuno-inflammation in IR mice. The results of network pharmacology and Western blot suggested that the BECC of XKF and XKF might alleviate IR by promoting the activation of hepatic phosphatidylinositol 3-kinase (PI3K), phosphorylation of protein kinase B (AKT), and inhibiting the expression of glucose-6-phosphate phosphatase (G6PC) and phosphoenolpyruvate carboxykinase 1 (PCK1), the key limiting enzymes of hepatic gluconeogenesis. The above results suggest that berberine, astragaloside IV and chlorogenic acid can be used as the potential BECC of XKF to improve IR, and can regulate lipid metabolism, immuno-inflammation, and promote hepatic PI3K/AKT signaling to inhibit hepatic gluconeogenesis, regulate glucose homeostasis, and improve IR in mice.
8.The taste correction process of ibuprofen oral solution based on the combination of electronic tongue technology and artificial taste comprehensive evaluation
Rui YUAN ; Yun-ping QU ; Yan WANG ; Ya-xuan ZHANG ; Wan-ling ZHONG ; Xiao-yu FAN ; Hui-juan SHEN ; Yun-nan MA ; Jin-hong YE ; Jie BAI ; Shou-ying DU
Acta Pharmaceutica Sinica 2024;59(8):2404-2411
This experiment aims to study the taste-masking effects of different kinds of corrigent used individually and in combination on ibuprofen oral solution, in order to optimize the taste-masking formulation. Firstly, a wide range of corrigent and the mass fractions were extensively screened using electronic tongue technology. Subsequently, a combination of sensory evaluation, analytic hierarchy process (AHP)-fuzzy mathematics evaluation, and Box-Behnken experimental design were employed to comprehensively assess the taste-masking effects of different combinations of corrigent on ibuprofen oral solution, optimize the taste-masking formulation, and validate the results. The study received ethical approval from the Review Committee of the Beijing University of Chinese Medicine (ethical code: 2024BZYLL0102). The results showed that corrigent fractions and types were screened separately through single-factor experiments. Subsequently, a Box-Behnken response surface design combined with AHP and fuzzy mathematics evaluation was used to fit a functional model:
9.Pharmacokinetics of JS026 and JS026-JS016 for single intravenous administration in healthy volunteers
Yan TIAN ; Hui-Jing YE ; Jing-Jing WANG ; Nan-Yang LI ; Juan MA ; Xi TAN ; Fan WU ; Jie WANG ; Shu-Yan YU ; Xiao-Jie WU ; Jin-Jie HE ; Jing ZHANG ; Wen-Hong ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(15):2251-2255
Objective To evaluate tolerability,safety and pharmacokinetics of JS026 and JS026-JS016 single dose intravenous infusion in healthy adults.Methods This phase 1,randomized,double-blind,placebo-controlled,dose-escalation study totally included 48 participants:32 healthy subjects were enrolled in JS026 single intravenous infusion groups and 16 healthy subjects were enrolled in JS026-JS016 groups.JS026 was sequentially administered from low dose to high dose(30-1 000 mg),with intravenous infusion of JS026 or placebo in JS026 single-dose groups,and intravenous infusion of JS026-JS016 or placebo in the combination drug groups.Blood was collected according to the time point designed for trial.Serum concentrations of JS026 and JS016 were determined by enzyme linked immunosorbnent assay(ELISA),and pharmacokinetics parameters were calculated by WinNonlin 8.2.The power model method was used to evaluate the linear analysis of dose and drug exposure.Results 47 subjects completed trial and 1 subject lost to follow-up.After a single intravenous injection of JS026 of 30 mg,100 mg,300 mg,600 mg,and 1 000 mg,mean Cmax were(9.47±1.53),(33.20±4.95),(96.10±13.70),(177.00±22.20)and(353.00±56.70)μg·mL-1,respectively;mean AUC0-∞ were(4 225.00±607.00),(1.78 × 104±3 268.00),(5.83 × 104±1 038.00),(1.07 × 105±152.00),(1.66 × 105±327.00)μg·h·mL-1,respectively;mean t1/2 of JS026 were 563-709 h.The Cmax and AUC0-∞ of JS026 were basically similar alone or in combination with JS016.The results of Power model showed that Cmax and AUC0-∞ increased approximately linearly with the increasing dose of JS026.Treatment emergent adverse event was not increasing when dose increased and most of adverse event associated with drugs were abnormal on laboratory tests and haematuria,thus JS026 and JS016 was well tolerated in all groups.Conclusion The single intravenous infusion of JS026 can almost be thought to be a linear relationship between the doses and drug serum exposure.JS016 had no significant effect on serum concentration of JS026 and JS026 was well tolerated and safe in healthy subjects within 30-1 000 mg.
10.Enhancement of tropane alkaloids biosynthesis in Atropa belladonna hariy root by overexpression of HnCYP82M3 and DsTRI genes
De-hui MU ; Yan-hong LIU ; Piao-piao CHEN ; Ai-juan TAN ; Bing-nan MA ; Hang PAN ; Ming-sheng ZHANG ; Wei QIANG
Acta Pharmaceutica Sinica 2024;59(3):775-783
Tropane alkaloids (TAs) are a class of anticholinergic drugs widely used in clinical practice and mainly extracted from plant, among which

Result Analysis
Print
Save
E-mail