1.Dynamics of eosinophil infiltration and microglia activation in brain tissues of mice infected with Angiostrongylus cantonensis
Fanna WEI ; Renjie ZHANG ; Yahong HU ; Xiaoyu QIN ; Yunhai GUO ; Xiaojin MO ; Yan LU ; Jiahui SUN ; Yan ZHOU ; Jiatian GUO ; Peng SONG ; Yanhong CHU ; Bin XU ; Ting ZHANG ; Yuchun CAI ; Muxin CHEN
Chinese Journal of Schistosomiasis Control 2025;37(2):163-175
Objective To investigate the changes in eosinophil counts and the activation of microglial cells in the brain tissues of mice at different stages of Angiostrongylus cantonensis infection, and to examine the role of microglia in regulating the progression of angiostrongyliasis and unravel the possible molecular mechanisms. Methods Fifty BALB/c mice were randomly divided into the control group and the 7-d, 14-d, 21-day and 25-d infection groups, of 10 mice in each group. All mice in infection groups were infected with 30 stage III A. cantonensis larvae by gavage, and animals in the control group was given an equal amount of physiological saline. Five mice were collected from each of infection groups on days 7, 14, 21 d and 25 d post-infection, and 5 mice were collected from the control group on the day of oral gavage. The general and focal functional impairment was scored using the Clark scoring method to assess the degree of mouse neurological impairment. Five mice from each of infection groups were sacrificed on days 7, 14, 21 d and 25 d post-infection, and 5 mice from the control group were sacrificed on the day of oral gavage. Mouse brain tissues were sampled, and the pathological changes of brain tissues were dynamically observed using hematoxylin and eosin (HE) staining. Immunofluorescence staining with eosinophilic cationic protein (ECP) and ionized calcium binding adaptor molecule 1 (Iba1) was used to assess the degree of eosinophil infiltration and the counts of microglial cells in mouse brain tissues in each group, and the morphological parameters of microglial cells (skeleton analysis and fractal analysis) were quantified by using Image J software to determine the morphological changes of microglial cells. In addition, the expression of M1 microglia markers Fcγ receptor III (Fcgr3), Fcγ receptor IIb (Fcgr2b) and CD86 antigen (Cd86), M2 microglia markers Arginase 1 (Arg1), macrophage mannose receptor C-type 1 (Mrc1), chitinase-like 3 (Chil3), and phagocytosis genes myeloid cell triggering receptor expressed on myeloid cells 2 (Trem2), CD68 antigen (Cd68), and apolipoprotein E (Apoe) was quantified using real-time quantitative reverse transcription PCR (RT-qPCR) assay in the mouse cerebral cortex of mice post-infection. Results A large number of A. cantonensis larvae were seen on the mouse meninges surface post-infection, and many neuronal nuclei were crumpled and deeply stained, with a large number of bleeding points in the meninges. The median Clark scores of mouse general functional impairment were 0 (interquartile range, 0), 0 (interquartile range, 0.5), 6 (interquartile range, 1.0), 14 (interquartile range, 8.5) points and 20 (interquartile range, 9.0) points in the control group and the 7-d, 14-d, 21-d and 25-d groups, respectively (H = 22.45, P < 0.01), and the median Clark scores of mouse focal functional impairment were 0 (interquartile range, 0), 2 (interquartile range, 2.5), 7 (interquartile range, 3.0), 18 (interquartile range, 5.0) points and 25 (interquartile range, 6.5) points in the control group and the 7-d, 14-d, 21-d and 25-d groups, respectively (H = 22.72, P < 0.01). The mean scores of mice general and focal functional impairment were all higher in the infection groups than in the control group (all P values < 0.05). Immunofluorescence staining showed a significant difference in the eosinophil counts in mouse brain tissues among the five groups (F = 40.05, P < 0.000 1), and the eosinophil counts were significantly higher in mouse brain tissues in the 14-d (3.08 ± 0.78) and 21-d infection groups (5.97 ± 1.37) than in the control group (1.00 ± 0.28) (both P values < 0.05). Semi-quantitative analysis of microglia immunofluorescence showed a significant difference in the counts of microglial cells among the five groups (F = 17.66, P < 0.000 1), and higher Iba1 levels were detected in mouse brain tissues in 14-d (5.75 ± 1.28), 21-d (6.23 ± 1.89) and 25-d infection groups (3.70 ± 1.30) than in the control group (1.00 ± 0.30) (all P values < 0.05). Skeleton and fractal analyses showed that the branch length [(162.04 ± 34.10) μm vs. (395.37 ± 64.11) μm; t = 5.566, P < 0.05] and fractal dimension of microglial cells (1.30 ± 0.01 vs. 1.41 ± 0.03; t = 5.266, P < 0.05) were reduced in mouse brain tissues in the 21-d infection group relative to the control group. In addition, there were significant differences among the 5 groups in terms of M1 and M2 microglia markers Fcgr3 (F = 48.34, P < 0.05), Fcgr2b (F = 55.46, P < 0.05), Cd86 (F = 24.44, P < 0.05), Arg1 (F = 31.18, P < 0.05), Mrc1 (F = 15.42, P < 0.05) and Chil3 (F = 24.41, P < 0.05), as well as phagocytosis markers Trem2 (F = 21.19, P < 0.05), Cd68 (F = 43.95, P < 0.05) and Apoe (F = 7.12, P < 0.05) in mice brain tissues. Conclusions A. cantonensis infections may induce severe pathological injuries in mouse brain tissues that are characterized by massive eosinophil infiltration and persistent activation of microglia cells, thereby resulting in progressive deterioration of neurological functions.
2.Association between medium to long term ambient PM 2.5 exposure and overweight/obesity among primary and secondary school students
Chinese Journal of School Health 2025;46(7):937-940
Objective:
To investigate the association between medium to long term PM 2.5 exposure around school areas and overweight/obesity among primary and secondary school students in Guangxi, providing data support and theoretical foundations for scientifically addressing overweight and obesity in primary and secondary school students.
Methods:
From September to November 2023, a stratified cluster random sampling method was employed to select 251 183 students aged 7-18 years (grade 1 to grade 12) from 14 prefecture level cities (111 districts and counties) in Guangxi. PM 2.5 mass concentration data were obtained from the Tracking Air Pollution in China (TAP) dataset. Preliminary comparative analysis was conducted using the Mann-Whitney U test, while binary Logistic regression models were applied to quantify the relationship between PM 2.5 exposure and overweight/obesity. Restricted cubic spline analysis was further utilized to examine the nonlinear association between PM 2.5 concentration and overweight/obesity risk.
Results:
The detection rate of overweight/obesity among Guangxi students in 2023 was 19.5%. The median PM 2.5 concentration in the year prior to the study was higher in the overweight/obesity group (23.22 μg/m 3) compared to the non overweight/obesity group (22.63 μg/m 3) ( Z=-15.66, P <0.01), and consistent trends were observed across gender (male/female) and educational stage (primary/junior/senior high school) subgroups (all P <0.01). Binary Logistic regression revealed that for every 10 μg/m 3 increase in the annual average PM 2.5 concentration, the risk of overweight/obesity increased by 12% ( OR=1.12, 95%CI=1.09- 1.15 , P <0.01). Restricted cubic spline analysis indicated a nonlinear relationship between monthly PM 2.5 levels and overweight/obesity risk ( P trend <0.01). Below 22.68 μg/m 3, PM 2.5 exposure showed no significant association with obesity risk; above the threshold, the risk increased with rising PM 2.5 levels.
Conclusion
Medium to long term PM 2.5 exposure around school environments is significantly associated with overweight/obesity among primary and secondary school students.
3.Comparative analysis of characteristics and functions of exosomes from human induced pluripotent stem cell-derived platelets and apheresis platelets
Weihua HUANG ; Yan ZANG ; Aihua QIN ; Ziyang FENG ; Heshan TANG ; Fei GUO ; Chuyan WU ; Qiu SHEN ; Baohua QIAN ; Haihui GU ; Zhanshan CHA
Chinese Journal of Blood Transfusion 2025;38(9):1154-1161
Objective: To compare the biological characteristics of human induced pluripotent stem cell-derived platelet exosomes (hiPSC-Plt-Exos) with those of conventional apheresis platelet exosomes (Plt-Exos), specifically focusing on their differential abilities to enhance the proliferation and migration of human umbilical cord mesenchymal stem cells (hUC-MSCs). Methods: Exosomes were isolated from hiPSC-derived Plt and apheresis Plt concentrate using size exclusion chromatography. These exosomes were then characterized through nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and Western blotting. Co-culture experiments into hUC-MSCs were conducted with hiPSC-Plt-Exos and apheresis Plt-Exos, respectively. Their effects on the proliferation and migration of hUC-MSCs were assessed via cell proliferation assays and scratch tests. Results: hiPSC-Plt-Exos and apheresis Plt-Exos exhibited comparable particle sizes, morphological features (such as the characteristic cup-shaped structure), and surface markers (including CD9 and HSP70). Notably, hiPSC-Plt-Exos demonstrated a significantly greater ability to enhance the proliferation and migration of hUC-MSCs compared to apheresis Plt-Exos (P<0.05). These differences provide critical comparative data for their application in various clinical contexts. Conclusion: This study establishes a theoretical foundation for developing precise therapeutic strategies based on hiPSC-Plt-Exos. Furthermore, it underscores the necessity of selecting the appropriate type of exosomes according to the specific disease microenvironment to achieve optimal therapeutic outcomes.
4.Evaluation of the preventive and therapeutic effects and safety of repetitive transcranial magnetic stimulation at different frequencies on radiation-induced brain injury
Tongzhou QIN ; Liyuan LIU ; Ling GUO ; Guiqiang ZHOU ; Yan ZHOU ; Xia MIAO ; Guirong DING
Chinese Journal of Radiological Health 2025;34(5):702-712
Objective Radiation-induced brain injury (RIBI) is a common complication of radiotherapy for the head and neck tumors, and the current treatment methods are limited. Repetitive transcranial magnetic stimulation (rTMS), as a non-invasive neural regulation technique, has shown great potential in neuroprotection. However, the parameter selection and biological safety of rTMS in the prevention and treatment of RIBI have not been reported. Methods Using a mouse model of RIBI, this study employed three rTMS frequencies (5, 10, and 25 Hz) for intervention. Biochemical and pathological assays were conducted to identify the optimal stimulation parameter. Subsequently, this parameter was used to evaluate the biological safety in normal mice. Results Under the conditions of this experiment, rTMS interventions with all three frequencies could reduce the levels of serum brain injury markers (NSE and S100B) and inflammatory factors in mice (P < 0.001), and alleviate the morphological and structural damage of hippocampal tissue. The 10 Hz rTMS could significantly promote hippocampal neurogenesis in RIBI mice (P < 0.05). Furthermore, 10 Hz rTMS showed no significant effects on the cognitive function and mood of normal mice. The intervention did not significantly change the morphology and structure of the main organs, blood biochemical indicators, and the level of hippocampal neurogenesis in mice. Conclusion The 10 Hz rTMS is optimal for the prevention and treatment of RIBI with high biological safety.
5.Potential utility of albumin-bilirubin and body mass index-based logistic model to predict survival outcome in non-small cell lung cancer with liver metastasis treated with immune checkpoint inhibitors.
Lianxi SONG ; Qinqin XU ; Ting ZHONG ; Wenhuan GUO ; Shaoding LIN ; Wenjuan JIANG ; Zhan WANG ; Li DENG ; Zhe HUANG ; Haoyue QIN ; Huan YAN ; Xing ZHANG ; Fan TONG ; Ruiguang ZHANG ; Zhaoyi LIU ; Lin ZHANG ; Xiaorong DONG ; Ting LI ; Chao FANG ; Xue CHEN ; Jun DENG ; Jing WANG ; Nong YANG ; Liang ZENG ; Yongchang ZHANG
Chinese Medical Journal 2025;138(4):478-480
6.Drying kinetics of Salviae Miltiorrhizae Radix et Rhizoma and dynamics of active components in drying process.
Yu-Qin LI ; Xiu-Xiu SHA ; Zhe ZHANG ; Shu-Lan SU ; Liang NI ; Sheng GUO ; Hui YAN ; Da-Wei QIAN ; Jin-Ao DUAN
China Journal of Chinese Materia Medica 2025;50(1):128-139
This study explored the drying kinetics of Salviae Miltiorrhizae Radix et Rhizoma(SM), established the suitable models simulating the drying kinetics, and then analyzed the dynamic changes of active components during the drying processes with different methods, aiming to provide a basis for the establishment of suitable drying methods and the quality control of SM. The drying kinetics were studied based on the drying curve, drying rate, moisture effective diffusion coefficient, and drying activation energy, and the appropriate drying kinetics model of SM was established. The drying performance of different methods, such as hot air drying, infrared drying, and microwave drying of SM was evaluated, and the changes in the content of 10 salvianolic acids and 6 tanshinones during drying were analyzed by UPLC-TQ-MS. The Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS) was employed to evaluate the quality of SM dried with different methods. The results showed that the drying rate and moisture effective diffusion coefficient of SM increased with the rise in drying temperature, and the maximum drying rates of different methods were in the order of microwave drying > infrared drying > hot air drying, slice > whole root. The drying rate decreased with the rise in temperature and the extension of drying time. The activation energy of hot air drying was higher than that of infrared drying in SM. The most suitable model for simulating the drying process of SM was the Page model. The TOPSIS results suggested infrared drying at 50 ℃ was the optimal drying method for SM. During the drying process, the content of salvianolic acids increased in different degrees with the loss of moisture, among which salvianolic acid B showed the largest increase of 44 times compared with that in the fresh medicinal material. Tanshinones also existed in the fresh herb of SM, and the content of tanshinone Ⅱ_A increased by 3 times after drying. The results provided a basis for the establishment of suitable drying methods and the quality control of SM.
Salvia miltiorrhiza/chemistry*
;
Desiccation/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Rhizome/chemistry*
;
Kinetics
;
Quality Control
;
Abietanes
7.Liuwei Dihuang Pills improve chemotherapy-induced ovarian injury in mice by promoting the proliferation of female germline stem cells.
Bo JIANG ; Wen-Yan ZHANG ; Guang-di LIN ; Xiao-Qing MA ; Guo-Xia LAN ; Jia-Wen ZHONG ; Ling QIN ; Jia-Li MAI ; Xiao-Rong LI
China Journal of Chinese Materia Medica 2025;50(9):2495-2504
This study primarily investigates the effect of Liuwei Dihuang Pills on the activation and proliferation of female germline stem cells(FGSCs) in the ovaries and cortex of mice with premature ovarian failure(POF), and how it improves ovarian function. ICR mice were randomly divided into the control group, model group, Liuwei Dihuang Pills group, Liuwei Dihuang Pills double-dose group, and estradiol valerate group. A mouse model of POF was established by intraperitoneal injection of cyclophosphamide. After successful modeling, the mice were treated with Liuwei Dihuang Pills or estradiol valerate for 28 days. Vaginal smears were prepared to observe the estrous cycle and body weight. After the last administration, mice were sacrificed and sampled. Serum levels of estradiol(E_2), follicle-stimulating hormone(FSH), luteinizing hormone(LH), and anti-Müllerian hormone(AMH) were measured by enzyme-linked immunosorbent assay(ELISA). Hematoxylin-eosin(HE) staining was used to observe ovarian morphology and to count follicles at all stages to evaluate ovarian function. Immunohistochemistry was used to detect the expression of mouse vasa homolog(MVH), a marker of ovarian FGSCs. Immunofluorescence staining, using co-labeling of MVH and proliferating cell nuclear antigen(PCNA), was used to detect the expression and localization of specific markers of FGSCs. Western blot was employed to assess the protein expression of MVH, octamer-binding transcription factor 4(Oct4), and PCNA in the ovaries. The results showed that compared with the control group, the model group exhibited disordered estrous cycles, decreased ovarian index, increased atretic follicles, and a reduced number of follicles at all stages. FSH and LH levels were significantly elevated, while AMH and E_2 levels were significantly reduced, indicating the success of the model. After treatment with Liuwei Dihuang Pills or estradiol valerate, hormone levels improved, the number of atretic follicles decreased, and the number of follicles at all stages increased. MVH marker protein and PCNA proliferative protein expression in ovarian tissue also increased. These results suggest that Liuwei Dihuang Pills regulate estrous cycles and hormone disorders in POF mice, promote the proliferation of FGSCs, improve follicular development in POF mice, and enhance ovarian function.
Animals
;
Female
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Cell Proliferation/drug effects*
;
Mice, Inbred ICR
;
Ovary/cytology*
;
Primary Ovarian Insufficiency/genetics*
;
Follicle Stimulating Hormone/metabolism*
;
Humans
;
Anti-Mullerian Hormone/blood*
;
Antineoplastic Agents/adverse effects*
;
Luteinizing Hormone/metabolism*
;
Cyclophosphamide/adverse effects*
8.Effects of combined use of active ingredients in Buyang Huanwu Decoction on oxygen-glucose deprivation/reglucose-reoxygenation-induced inflammation and oxidative stress of BV2 cells.
Tian-Qing XIA ; Ying CHEN ; Jian-Lin HUA ; Qin SU ; Cun-Yan DAN ; Meng-Wei RONG ; Shi-Ning GE ; Hong GUO ; Bao-Guo XIAO ; Jie-Zhong YU ; Cun-Gen MA ; Li-Juan SONG
China Journal of Chinese Materia Medica 2025;50(14):3835-3846
This study aims to explore the effects and action mechanisms of the active ingredients in Buyang Huanwu Decoction(BYHWD), namely tetramethylpyrazine(TMP) and hydroxy-safflor yellow A(HSYA), on oxygen-glucose deprivation/reglucose-reoxygenation(OGD/R)-induced inflammation and oxidative stress of microglia(MG). Network pharmacology was used to screen the effective monomer ingredients of BYHWD and determine the safe concentration range for each component. Inflammation and oxidative stress models were established to further screen the best ingredient combination and optimal concentration ratio with the most effective anti-inflammatory and antioxidant effects. OGD/R BV2 cell models were constructed, and BV2 cells in the logarithmic growth phase were divided into a normal group, a model group, an HSYA group, a TMP group, and an HSYA + TMP group. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of inflammatory cytokines such as interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6). Oxidative stress markers, including superoxide dismutase(SOD), nitric oxide(NO), and malondialdehyde(MDA), were also measured. Western blot was used to analyze the protein expression of both inflammation-related pathway [Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)] and oxidative stress-related pathway [nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)]. Immunofluorescence was used to assess the expression of proteins such as inducible nitric oxide synthase(iNOS) and arginase-1(Arg-1). The most effective ingredients for anti-inflammatory and antioxidant effects in BYHWD were TMP and HSYA. Compared to the normal group, the model group showed significantly increased levels of IL-1β, TNF-α, IL-6, NO, and MDA, along with significantly higher protein expression of NF-κB, TLR4, Nrf2, and HO-1 and significantly lower SOD levels. The differences between the two groups were statistically significant. Compared to the model group, both the HSYA group and the TMP group showed significantly reduced levels of IL-1β, TNF-α, IL-6, NO, and MDA, lower expression of NF-κB and TLR4 proteins, higher levels of SOD, and significantly increased protein expression of Nrf2 and HO-1. Additionally, the expression of the M1-type MG marker iNOS was significantly reduced, while the expression of the M2-type MG marker Arg-1 was significantly increased. The results of the HSYA group and the TMP group had statistically significant differences from those of the model group. Compared to the HSYA group and the TMP group, the HSYA + TMP group showed further significant reductions in IL-1β, TNF-α, IL-6, NO, and MDA levels, along with significant reductions in NF-κB and TLR4 protein expression, an increase in SOD levels, and elevated Nrf2 and HO-1 protein expression. Additionally, the expression of the M1-type MG marker iNOS was reduced, while the M2-type MG marker Arg-1 expression increased significantly in the HSYA + TMP group compared to the TMP or HSYA group. The differences in the results were statistically significant between the HSYA + TMP group and the TMP or HSYA group. The findings indicated that the combined use of HSYA and TMP, the active ingredients of BYHWD, can effectively inhibit OGD/R-induced inflammation and oxidative stress of MG, showing superior effects compared to the individual use of either component.
Oxidative Stress/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Mice
;
Glucose/metabolism*
;
Cell Line
;
Inflammation/genetics*
;
Oxygen/metabolism*
;
Pyrazines/pharmacology*
;
Microglia/metabolism*
;
NF-E2-Related Factor 2/immunology*
;
NF-kappa B/immunology*
;
Toll-Like Receptor 4/immunology*
;
Anti-Inflammatory Agents/pharmacology*
;
Humans
9.Effects of alcoholic extract of Gnaphalium affine on oxidative stress and intestinal flora in rats with chronic obstructive pulmonary disease.
Da-Huai LIN ; Xiang-Li YE ; Guo-Hong YAN ; Kai-Ge WANG ; Yu-Qin ZHANG ; Huang LI
China Journal of Chinese Materia Medica 2025;50(15):4110-4119
The efficacy mechanism of the alcoholic extract of Gnaphalium affine was investigated by observing its influence on oxidative stress and intestinal flora in rats modeled for chronic obstructive pulmonary disease(COPD). UPLC-MS was used to evaluate the quality of the alcoholic extract of G. affine, and 72 rats were randomly divided into six groups, with COPD models established in five groups by cigarette smoke combined with airway drip lipopolysaccharide, and the rats were given the positive drug of Danlong Oral Solution, as well as low-, medium-, and high-doses alcoholic extract of G. affine, respectively. After two weeks of continuous gastric gavage, the body weights and general morphology observations were performed; HE staining and Masson staining were used to verify the effects of the alcoholic extract of G. affine on alveolar inflammation and collagen deposition area in COPD rats; the oxidative stress indexes CAT and GSH in serum and SOD and MDA in lung tissue of the rats were measured, and the mRNA expression of HO-1, Nrf2, and NQO1 were determined by qRT-PCR. The protein expressions of HO-1, Nrf2, and NQO1 were determined by the Western blot method, and the mechanism by which the alcoholic extract of G. affine affected oxidative stress in COPD rats was explored. Finally, the influence of G. affine on the changes in intestinal flora caused by COPD was studied by 16S rRNA sequencing. The results showed that a total of 121 chemical components were identified by UPLC-MS, including 70 positive and 51 negative ion modes. In animal experiments, it was found that the alcoholic extracts of G. affine were able to reduce the percentage of collagen deposition, affect the oxidative stress indexes such as CAT, GSH, SOD, MDA, as well as the mRNA and protein expression of Nrf2, HO-1, and NQO1. The 16S rRNA sequencing results showed an increase in the level of Lactobacillales and a decrease in the level of Desulfovibrio and Desulfovibrionales, suggesting that the alcoholic extracts of G. affine could reverse the changes in intestinal flora caused by COPD. In conclusion, the alcoholic extracts of G. affine may exert anti-COPD effects by affecting the oxidative stress pathway and modulating the changes in intestinal flora.
Animals
;
Oxidative Stress/drug effects*
;
Pulmonary Disease, Chronic Obstructive/genetics*
;
Rats
;
Male
;
Gastrointestinal Microbiome/drug effects*
;
Rats, Sprague-Dawley
;
Drugs, Chinese Herbal/administration & dosage*
;
NF-E2-Related Factor 2/metabolism*
;
Humans
;
Lung/metabolism*
10.Mechanism of puerarin improving myocardial contractile function in myocardial hypertrophy by inhibiting ferroptosis via Nrf2/ARE/HO-1 signaling pathway.
Yan-Dong LIU ; Wei QIAO ; Zhao-Hui PEI ; Guo-Liang SONG ; Wei JIN ; Wei-Bing ZHONG ; Qin-Qin DENG
China Journal of Chinese Materia Medica 2025;50(16):4679-4689
This study aims to explore the specific mechanism by which puerarin inhibits ferroptosis and improves the myocardial contractile function in myocardial hypertrophy through the nuclear factor erythroid 2-related factor 2(Nrf2)/antioxidant response element(ARE)/heme oxygenase-1(HO-1) signaling pathway. The hypertrophic cardiomyocyte model was established using phenylephrine, and H9c2 cells were divided into control group, model group, puerarin group, and puerarin+ML385 group. Cell viability and surface area were detected by cell counting kit-8(CCK-8) and immunofluorescence experiments. The mitochondrial membrane potential and Ca~(2+) concentration were measured. The ferroptosis-related indicators were detected by biochemical and fluorescence staining methods. The expression of proteins related to ferroptosis and the Nrf2/ARE/HO-1 signaling pathway was detected by Western blot. A myocardial hypertrophy model was established, and 40 rats were randomly divided into sham group, model group, puerarin group, and puerarin+Nrf2 inhibitor(ML385) group, with 10 rats in each group. Echocardiogram, hemodynamic parameters, and myocardial hypertrophy parameters were measured. Histopathological changes of myocardial tissues were observed by hematoxylin and eosin(HE) staining and Masson staining. Biochemical methods, enzyme-linked immunosorbent assay(ELISA), and fluorescence staining were used to detect inflammatory factors and ferroptosis-related indicators. Immunohistochemistry was used to detect the expression of proteins related to ferroptosis and the Nrf2/ARE/HO-1 signaling pathway. Cell experiments showed that puerarin intervention significantly enhanced the viability of hypertrophic cardiomyocytes, reduced their surface area, and restored mitochondrial membrane potential and Ca~(2+) homeostasis. Mechanism studies revealed that puerarin promoted Nrf2 nuclear translocation, upregulated the expression of HO-1, solute carrier family 7 member 11(SLC7A11), and glutathione peroxidase 4(GPX4), and decreased malondialdehyde(MDA), reactive oxygen species(ROS), and iron levels. These protective effects were reversed by ML385. In animal experiments, puerarin improved cardiac function in rats with myocardial hypertrophy, alleviated myocardial hypertrophy and fibrosis, inhibited inflammatory responses and ferroptosis, and promoted nuclear Nrf2 translocation and HO-1 expression. However, combined intervention with ML385 led to deterioration of hemodynamics and a rebound in ferroptosis marker levels. In conclusion, puerarin may inhibit cardiomyocyte ferroptosis through the Nrf2/ARE/HO-1 signaling pathway, thereby improving myocardial contractile function in myocardial hypertrophy.
Animals
;
NF-E2-Related Factor 2/genetics*
;
Rats
;
Ferroptosis/drug effects*
;
Signal Transduction/drug effects*
;
Isoflavones/pharmacology*
;
Male
;
Rats, Sprague-Dawley
;
Cardiomegaly/genetics*
;
Myocytes, Cardiac/metabolism*
;
Antioxidant Response Elements/drug effects*
;
Myocardial Contraction/drug effects*
;
Heme Oxygenase-1/genetics*
;
Cell Line


Result Analysis
Print
Save
E-mail