1.Cyclocarya paliurus Polysaccharide Inhibits Benign Prostatic Hyperplasia by Reducing 5α-Reductase 2
Qinhui DAI ; Mengxia YAN ; Chen WANG ; Chenjun SHEN ; Chenying JIANG ; Bo YANG ; Huajun ZHAO ; Zhihui ZHU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):107-114
ObjectiveTo investigate the effect and mechanism of polysaccharide in water extract of Cyclocarya paliurus (CPWP) in inhibiting benign prostatic hyperplasia (BPH). MethodsCPWP was obtained by heating reflux, aqueous extraction, alcohol precipitation, and freeze drying. The chemical composition and structural properties of CPWP were analyzed by high performance liquid chromatography with 1-pheny-3-methyl-5-pyrazolone pre-column derivatization and infrared spectroscopy. Male SD rats were randomly assigned into control, model, finasteride (ig 5 mg·kg-1), and low-, medium-, and high-dose (ig 50, 75, 100 mg·kg-1) CPWP groups, with 8 rats in each group. The BPH model was established by subcutaneously injecting propionate testosterone in castrated rats. The rats in the drug intervention groups were administrated with corresponding drugs, and those in the control group were administrated with an equal volume of normal saline each day. After 30 consecutive days, the rats were sacrificed, and the prostate tissue was separated and weighed. The effects of drug interventions on the body weight, prostate wet weight, and prostate index of rats were examined. The prostate tissue was stained with hematoxylin-eosin (HE) for observation of pathological changes. Enzyme-linked immunosorbent assay was employed to measure the level of dihydrotestosterone (DHT), and immunohistochemical staining was used to detect the expression of steroid 5 alpha-reductase 2 (SRD5A2) and Ki67 in the prostate tissue. ResultsCPWP was identified as a saccharide, with characteristic absorption peaks of saccharides. CPWP showed the total sugar content of 44.15% and molecular weight within the range of 5.5-78.8 kDa, being composed of mannose, rhamnose, galacturonic acid, glucose, galactose, xylose, and arabinose. Compared with the control group, the model group had significantly increased prostate wet weight and prostate index (P<0.01), thick and tall prostate epithelial cells, increased internal wrinkles, papillary expansion into the cavity, an elevation in DHT level in the serum, and up-regulated expression of SRD5A2 and Ki67 in the prostate tissue (P<0.05, P<0.01). Compared with the model group, both the finasteride and CPWP groups showed decreases in prostate wet weight and prostate index (P<0.05, P<0.01), thinned prostate epithelial cells, with only a small portion of internal wrinkles and papillary expansion into the cavity, shortened papillary protrusions, lowered DHT level in the serum, and down-regulated expression of SRD5A2 and Ki67 in the prostate tissue (P<0.01). Moreover, CPWP exerted effects in a dose-dependent manner. ConclusionCPWP inhibits BPH by regulating the expression of SRD5A2.
2.Changes and Trends in the microbiological-related standards in the Chinese Pharmacopoeia 2025 Edition
FAN Yiling ; ZHU Ran ; YANG Yan ; JIANG Bo ; SONG Minghui ; WANG Jing ; LI Qiongqiong ; LI Gaomin ; WANG Shujuan ; SHAO Hong ; MA Shihong ; CAO Xiaoyun ; HU Changqin ; MA Shuangcheng, ; YANG Meicheng
Drug Standards of China 2025;26(1):093-098
Objective: To systematically analyze the revisions content and technological development trends of microbiological standards in the Chinese Pharmacopoeia (ChP) 2025 Edition, and explore its novel requirements in risk-based pharmaceutical product lifecycle management.
Methods: A comprehensive review was conducted on 26 microbiological-related standards to summarize the revision directions and scientific implications from perspectives including the revision overview, international harmonization of microbiological standards, risk-based quality management system, and novel tools and methods with Chinese characteristics.
Results: The ChP 2025 edition demonstrates three prominent features in microbiological-related standards: enhanced international harmonization, introduced emerging molecular biological technologies, and established a risk-based microbiological quality control system.
Conclusion: The new edition of the Pharmacopoeia has systematically constructed a microbiological standard system, which significantly improves the scientificity, standardization and applicability of the standards, providing a crucial support for advancing the microbiological quality control in pharmaceutical industries of China.
3.Establishment and Application of an in Vitro Cellular Model of Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells with Serum Injury in aGVHD Mouse.
Run-Xiang XU ; Pei-Lin LI ; Jia-Yi TIAN ; Jie TANG ; Bo-Feng YIN ; Fu-Hao YU ; Fei-Yan WANG ; Xiao-Tong LI ; Xiao-Yu ZHANG ; Wen-Rong XIA ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):255-261
OBJECTIVE:
To establish an in vitro cell model simulating acute graft-versus-host disease (aGVHD) bone marrow microenvironment injury with the advantage of mouse serum of aGVHD model and explore the effect of serum of aGVHD mouse on the adipogenic differentiation ability of mesenchymal stem cells (MSCs).
METHODS:
The 6-8-week-old C57BL/6N female mice and BALB/c female mice were used as the donor and recipient mice of the aGVHD model, respectively. Bone marrow transplantation (BMT) mouse model (n=20) was established by being injected with bone marrow cells (1×107 per mouse) from donor mice within 4-6 hours after receiving a lethal dose (8.0 Gy, 72.76 cGy/min) of γ ray general irradiation. A mouse model of aGVHD (n=20) was established by infusing a total of 0.4 ml of a mixture of donor mouse-derived bone marrow cells (1×107 per mouse) and spleen lymphocytes (2×106 per mouse). The blood was removed from the eyeballs and the mouse serum was aspirated on the 7th day after modeling. Bone marrow-derived MSCs were isolated from 1-week-old C57BL/6N male mice and incubated with 2%, 5% and 10% BMT mouse serum and aGVHD mouse serum in the medium, respectively. The effect of serum in the two groups on the in vitro adipogenic differentiation ability of mouse MSCs was detected by Oil Red O staining. The expression levels of related proteins PPARγ and CEBPα were detected by Western blot. The expression differences of key adipogenic transcription factors including PPARγ, CEBPα, FABP4 and LPL were determined by real-time quantitative PCR (RT-qPCR).
RESULTS:
An in vitro cell model simulating the damage of bone marrow microenvironment in mice with aGVHD was successfully established. Oil Red O staining showed that the number of orange-red fatty droplets was significantly reduced and the adipogenic differentiation ability of MSC was impaired at aGVHD serum concentration of 10% compared with BMT serum. Western blot experiments showed that adipogenesis-related proteins PPARγ and CEBPα expressed in MSCs were down-regulated. Further RT-qPCR assay showed that the production of PPARγ, CEBPα, FABP4 and LPL, the key transcription factors for adipogenic differentiation of MSC, were significantly reduced.
CONCLUSION
The adipogenic differentiation capacity of MSCs is inhibited by aGVHD mouse serum.
Animals
;
Mesenchymal Stem Cells/cytology*
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Adipogenesis
;
Female
;
Cell Differentiation
;
Graft vs Host Disease/blood*
;
Bone Marrow Cells/cytology*
;
PPAR gamma/metabolism*
;
Disease Models, Animal
;
CCAAT-Enhancer-Binding Protein-alpha/metabolism*
4.Curcumin inhibits lipid metabolism in non-small cell lung cancer by downregulating the HIF-1α pathway.
Dandan LI ; Jiaxin CHU ; Yan YAN ; Wenjun XU ; Xingchun ZHU ; Yun SUN ; Haofeng DING ; Li REN ; Bo ZHU
Journal of Southern Medical University 2025;45(5):1039-1046
OBJECTIVES:
To investigate the effect of curcumin on lipid metabolism in non-small cell lung cancer (NSCLC) and its molecular mechanism.
METHODS:
The inhibitory effect of curcumin (0-70 μmol/L) on proliferation of A549 and H1299 cells was assessed using MTT assay, and 20 and 40 μmol/L curcumin was used in the subsequent experiments. The effect of curcumin on lipid metabolism was evaluated using cellular uptake assay, wound healing assay, triglyceride (TG)/free fatty acid (NEFA) measurements, and Oil Red O staining. Western blotting was performed to detect the expressions of PGC-1α, PPAR-α, and HIF-1α in curcumin-treated cells. Network pharmacology was used to predict the metabolic pathways, and the results were validated by Western blotting. In a nude mouse model bearing A549 cell xenograft, the effects of curcumin (20 mg/kg) on tumor growth and lipid metabolism were assessed by measuring tumor weight and observing the changes in intracellular lipid droplets.
RESULTS:
Curcumin concentration-dependently inhibited the proliferation of A549 and H1299 cells and significantly reduced TG and NEFA levels and intracellular lipid droplets. Western blotting revealed that curcumin significantly upregulated PGC-1α and PPAR‑α expressions in the cells. KEGG pathway enrichment analysis predicted significant involvement of the HIF-1 signaling pathway in curcumin-treated NSCLC, suggesting a potential interaction between HIF-1α and PPAR‑α. Western blotting confirmed that curcumin downregulated the expression of HIF-1α. In the tumor-bearing mice, curcumin treatment caused significant reduction of the tumor weight and the number of lipid droplets in the tumor cells.
CONCLUSIONS
Curcumin inhibits NSCLC cell proliferation and lipid metabolism by downregulating the HIF-1α pathway.
Curcumin/pharmacology*
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Animals
;
Lipid Metabolism/drug effects*
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Lung Neoplasms/pathology*
;
Mice, Nude
;
Down-Regulation
;
Mice
;
Cell Proliferation/drug effects*
;
Cell Line, Tumor
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
;
PPAR alpha/metabolism*
;
Signal Transduction/drug effects*
;
A549 Cells
5.Chromatin landscape alteration uncovers multiple transcriptional circuits during memory CD8+ T-cell differentiation.
Qiao LIU ; Wei DONG ; Rong LIU ; Luming XU ; Ling RAN ; Ziying XIE ; Shun LEI ; Xingxing SU ; Zhengliang YUE ; Dan XIONG ; Lisha WANG ; Shuqiong WEN ; Yan ZHANG ; Jianjun HU ; Chenxi QIN ; Yongchang CHEN ; Bo ZHU ; Xiangyu CHEN ; Xia WU ; Lifan XU ; Qizhao HUANG ; Yingjiao CAO ; Lilin YE ; Zhonghui TANG
Protein & Cell 2025;16(7):575-601
Extensive epigenetic reprogramming involves in memory CD8+ T-cell differentiation. The elaborate epigenetic rewiring underlying the heterogeneous functional states of CD8+ T cells remains hidden. Here, we profile single-cell chromatin accessibility and map enhancer-promoter interactomes to characterize the differentiation trajectory of memory CD8+ T cells. We reveal that under distinct epigenetic regulations, the early activated CD8+ T cells divergently originated for short-lived effector and memory precursor effector cells. We also uncover a defined epigenetic rewiring leading to the conversion from effector memory to central memory cells during memory formation. Additionally, we illustrate chromatin regulatory mechanisms underlying long-lasting versus transient transcription regulation during memory differentiation. Finally, we confirm the essential roles of Sox4 and Nrf2 in developing memory precursor effector and effector memory cells, respectively, and validate cell state-specific enhancers in regulating Il7r using CRISPR-Cas9. Our data pave the way for understanding the mechanism underlying epigenetic memory formation in CD8+ T-cell differentiation.
CD8-Positive T-Lymphocytes/metabolism*
;
Cell Differentiation
;
Chromatin/immunology*
;
Animals
;
Mice
;
Immunologic Memory
;
Epigenesis, Genetic
;
SOXC Transcription Factors/immunology*
;
NF-E2-Related Factor 2/immunology*
;
Mice, Inbred C57BL
;
Gene Regulatory Networks
;
Enhancer Elements, Genetic
6.Inhibition of KLK8 promotes pulmonary endothelial repair by restoring the VE-cadherin/Akt/FOXM1 pathway.
Ying ZHAO ; Hui JI ; Feng HAN ; Qing-Feng XU ; Hui ZHANG ; Di LIU ; Juan WEI ; Dan-Hong XU ; Lai JIANG ; Jian-Kui DU ; Ping-Bo XU ; Yu-Jian LIU ; Xiao-Yan ZHU
Journal of Pharmaceutical Analysis 2025;15(4):101153-101153
Image 1.
7.Association of Body Mass Index with All-Cause Mortality and Cause-Specific Mortality in Rural China: 10-Year Follow-up of a Population-Based Multicenter Prospective Study.
Juan Juan HUANG ; Yuan Zhi DI ; Ling Yu SHEN ; Jian Guo LIANG ; Jiang DU ; Xue Fang CAO ; Wei Tao DUAN ; Ai Wei HE ; Jun LIANG ; Li Mei ZHU ; Zi Sen LIU ; Fang LIU ; Shu Min YANG ; Zu Hui XU ; Cheng CHEN ; Bin ZHANG ; Jiao Xia YAN ; Yan Chun LIANG ; Rong LIU ; Tao ZHU ; Hong Zhi LI ; Fei SHEN ; Bo Xuan FENG ; Yi Jun HE ; Zi Han LI ; Ya Qi ZHAO ; Tong Lei GUO ; Li Qiong BAI ; Wei LU ; Qi JIN ; Lei GAO ; He Nan XIN
Biomedical and Environmental Sciences 2025;38(10):1179-1193
OBJECTIVE:
This study aimed to explore the association between body mass index (BMI) and mortality based on the 10-year population-based multicenter prospective study.
METHODS:
A general population-based multicenter prospective study was conducted at four sites in rural China between 2013 and 2023. Multivariate Cox proportional hazards models and restricted cubic spline analyses were used to assess the association between BMI and mortality. Stratified analyses were performed based on the individual characteristics of the participants.
RESULTS:
Overall, 19,107 participants with a sum of 163,095 person-years were included and 1,910 participants died. The underweight (< 18.5 kg/m 2) presented an increase in all-cause mortality (adjusted hazards ratio [ aHR] = 2.00, 95% confidence interval [ CI]: 1.66-2.41), while overweight (≥ 24.0 to < 28.0 kg/m 2) and obesity (≥ 28.0 kg/m 2) presented a decrease with an aHR of 0.61 (95% CI: 0.52-0.73) and 0.51 (95% CI: 0.37-0.70), respectively. Overweight ( aHR = 0.76, 95% CI: 0.67-0.86) and mild obesity ( aHR = 0.72, 95% CI: 0.59-0.87) had a positive impact on mortality in people older than 60 years. All-cause mortality decreased rapidly until reaching a BMI of 25.7 kg/m 2 ( aHR = 0.95, 95% CI: 0.92-0.98) and increased slightly above that value, indicating a U-shaped association. The beneficial impact of being overweight on mortality was robust in most subgroups and sensitivity analyses.
CONCLUSION
This study provides additional evidence that overweight and mild obesity may be inversely related to the risk of death in individuals older than 60 years. Therefore, it is essential to consider age differences when formulating health and weight management strategies.
Humans
;
Body Mass Index
;
China/epidemiology*
;
Male
;
Female
;
Middle Aged
;
Prospective Studies
;
Rural Population/statistics & numerical data*
;
Aged
;
Follow-Up Studies
;
Adult
;
Mortality
;
Cause of Death
;
Obesity/mortality*
;
Overweight/mortality*
8.NFKBIE: Novel Biomarkers for Diagnosis, Prognosis, and Immunity in Colorectal Cancer: Insights from Pan-cancer Analysis.
Chen Yang HOU ; Peng WANG ; Feng Xu YAN ; Yan Yan BO ; Zhen Peng ZHU ; Xi Ran WANG ; Shan LIU ; Dan Dan XU ; Jia Jia XIAO ; Jun XUE ; Fei GUO ; Qing Xue MENG ; Ren Sen RAN ; Wei Zheng LIANG
Biomedical and Environmental Sciences 2025;38(10):1320-1325
9.Clinical and Intestinal Ultrasound Findings in Mitochondrial Neurogastrointestinal Encephalomyopathy:Report of One Case.
Xiao-Yan ZHANG ; Qing-Li ZHU ; Ge-Chong RUAN ; Wen-Bo LI
Acta Academiae Medicinae Sinicae 2025;47(5):758-761
Mitochondrial neurogastrointestinal encephalomyopathy(MNGIE),a rare mitochondrial disorder caused by TYMP gene mutations,is characterized by severe gastrointestinal dysmotility,peripheral neuropathy,and leukodystrophy.This article summarizes the clinical data and intestinal ultrasound findings of a MNGIE case,aiming to provide insights for clinical diagnosis and treatment.
Humans
;
Mitochondrial Encephalomyopathies/diagnostic imaging*
;
Ultrasonography
;
Intestines/diagnostic imaging*
;
Male
;
Female
;
Intestinal Pseudo-Obstruction/diagnostic imaging*
;
Ophthalmoplegia/congenital*
;
Muscular Dystrophy, Oculopharyngeal
10.Advances in antitumor research of bifunctional small molecule inhibitors targeting heat shock protein 90
Hong-ping ZHU ; Xin XIE ; Rui QIN ; Wei HUANG ; Yan-qing LIU ; Cheng PENG ; Gu HE ; Bo HAN
Acta Pharmaceutica Sinica 2024;59(1):1-16
The heat shock protein 90 (Hsp90) protein family is a cluster of highly conserved molecules that play an important role in maintaining cellular homeostasis. Hsp90 and its co-chaperones regulate a variety of pathways and cellular functions, such as cell growth, cell cycle control and apoptosis. Hsp90 is closely associated with the occurrence and development of tumors and other diseases, making it an attractive target for cancer therapeutics. Inhibition of Hsp90 expression can affect multiple oncogenic pathways simultaneously. Most Hsp90 small molecule inhibitors are in clinical trials due to their low efficacy, toxicity or drug resistance, but they have obvious synergistic anti-tumor effect when used with histone deacetylase (HDAC) inhibitors, tubulin inhibitors or topoisomerase II (Topo II) inhibitors. To address this issue, the design of Hsp90 dual-target inhibitors can improve efficacy and reduce drug resistance, making it an effective tumor treatment strategy. In this paper, the domain and biological function of Hsp90 are briefly introduced, and the design, discovery and structure-activity relationship of Hsp90 dual inhibitors are discussed, in order to provide reference for the discovery of novel Hsp90 dual inhibitors and clinical drug research from the perspective of medicinal chemistry.

Result Analysis
Print
Save
E-mail