1.Programmed death-ligand 1 tumor proportion score in predicting the safety and efficacy of PD-1/PD-L1 antibody-based therapy in patients with advanced non-small cell lung cancer: A retrospective, multicenter, observational study.
Yuequan SHI ; Xiaoyan LIU ; Anwen LIU ; Jian FANG ; Qingwei MENG ; Cuimin DING ; Bin AI ; Yangchun GU ; Cuiying ZHANG ; Chengzhi ZHOU ; Yan WANG ; Yongjie SHUI ; Siyuan YU ; Dongming ZHANG ; Jia LIU ; Haoran ZHANG ; Qing ZHOU ; Xiaoxing GAO ; Minjiang CHEN ; Jing ZHAO ; Wei ZHONG ; Yan XU ; Mengzhao WANG
Chinese Medical Journal 2025;138(14):1730-1740
BACKGROUND:
This study aimed to investigate programmed death-ligand 1 tumor proportion score in predicting the safety and efficacy of PD-1/PD-L1 antibody-based therapy in treating patients with advanced non-small cell lung cancer (NSCLC) in a real-world setting.
METHODS:
This retrospective, multicenter, observational study enrolled adult patients who received PD-1/PD-L1 antibody-based therapy in China and met the following criteria: (1) had pathologically confirmed, unresectable stage III-IV NSCLC; (2) had a baseline PD-L1 tumor proportion score (TPS); and (3) had confirmed efficacy evaluation results after PD-1/PD-L1 treatment. Logistic regression, Kaplan-Meier analysis, and Cox regression were used to assess the progression-free survival (PFS), overall survival (OS), and immune-related adverse events (irAEs) as appropriate.
RESULTS:
A total of 409 patients, 65.0% ( n = 266) with a positive PD-L1 TPS (≥1%) and 32.8% ( n = 134) with PD-L1 TPS ≥50%, were included in this study. Cox regression confirmed that patients with a PD-L1 TPS ≥1% had significantly improved PFS (hazard ratio [HR] 0.747, 95% confidence interval [CI] 0.573-0.975, P = 0.032). A total of 160 (39.1%) patients experienced 206 irAEs, and 27 (6.6%) patients experienced 31 grade 3-5 irAEs. The organs most frequently associated with irAEs were the skin (52/409, 12.7%), thyroid (40/409, 9.8%), and lung (34/409, 8.3%). Multivariate logistic regression revealed that a PD-L1 TPS ≥1% (odds ratio [OR] 1.713, 95% CI 1.054-2.784, P = 0.030) was an independent risk factor for irAEs. Other risk factors for irAEs included pretreatment absolute lymphocyte count >2.5 × 10 9 /L (OR 3.772, 95% CI 1.377-10.329, P = 0.010) and pretreatment absolute eosinophil count >0.2 × 10 9 /L (OR 2.006, 95% CI 1.219-3.302, P = 0.006). Moreover, patients who developed irAEs demonstrated improved PFS (13.7 months vs. 8.4 months, P <0.001) and OS (28.0 months vs. 18.0 months, P = 0.007) compared with patients without irAEs.
CONCLUSIONS
A positive PD-L1 TPS (≥1%) was associated with improved PFS and an increased risk of irAEs in a real-world setting. The onset of irAEs was associated with improved PFS and OS in patients with advanced NSCLC receiving PD-1/PD-L1-based therapy.
Humans
;
Carcinoma, Non-Small-Cell Lung/metabolism*
;
Male
;
Female
;
Retrospective Studies
;
Middle Aged
;
Lung Neoplasms/metabolism*
;
Aged
;
B7-H1 Antigen/metabolism*
;
Programmed Cell Death 1 Receptor/metabolism*
;
Adult
;
Aged, 80 and over
;
Immune Checkpoint Inhibitors/therapeutic use*
2.Pharmacokinetics of Jinlingzi San and its single medicines in rats by LC-MS/MS.
Nan HU ; Yan-Bin MENG ; Si-Yu SHAN ; Shuang-Shuang ZHENG ; Ying-Han WANG ; Lan WANG ; Yu-Ling LIU
China Journal of Chinese Materia Medica 2025;50(5):1385-1391
This study aims to investigate the scientificity and efficacy of the compatibility of Jinlingzi San from pharmacokinetics. Liquid chromatography-tandem mass spectrometry(LC-MS/MS) was utilized to determine the plasma concentrations of the active components: toosendanin, tetrahydropalmatine A, and tetrahydropalmatine B at various time points following the gavage of Jinlingzi San and its single medicines in rats. Subsequently, WinNonlin was employed to calculate pertinent pharmacokinetic parameters. The pharmacokinetic parameters in rat plasma were compared between the single medicines and the compound formula of Jinlingzi San. It was discovered that the area under the curve(AUC_(all)) and peak concentrations(C_(max)) of tetrahydropalmatine A, and tetrahydropalmatine B were significantly elevated in the compound formula group compared with the single medicine groups. Conversely, the AUC_(all )and C_(max) of toosendanin notably decreased. Furthermore, the compound formula group had longer mean residence time(MRT) and lower apparent clearance(CL/F) of all three active ingredients than the single medicine groups(P<0.05). These findings indicated that Jinlingzi San enhanced the absorption of tetrahydropalmatine A and tetrahydropalmatine B in vivo, facilitating their pharmacological actions. Concurrently, it inhibited the absorption of toosendanin, thereby preventing potential toxic reactions. Moreover, the compatibility prolonged the residence time of the active ingredients in the body. This study provides a reference for exploring the compatibility rationality of Jinlingzi San.
Animals
;
Rats
;
Tandem Mass Spectrometry/methods*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Rats, Sprague-Dawley
;
Chromatography, Liquid/methods*
;
Berberine Alkaloids/blood*
;
Liquid Chromatography-Mass Spectrometry
3.Expert consensus on the application of nasal cavity filling substances in nasal surgery patients(2025, Shanghai).
Keqing ZHAO ; Shaoqing YU ; Hongquan WEI ; Chenjie YU ; Guangke WANG ; Shijie QIU ; Yanjun WANG ; Hongtao ZHEN ; Yucheng YANG ; Yurong GU ; Tao GUO ; Feng LIU ; Meiping LU ; Bin SUN ; Yanli YANG ; Yuzhu WAN ; Cuida MENG ; Yanan SUN ; Yi ZHAO ; Qun LI ; An LI ; Luo BA ; Linli TIAN ; Guodong YU ; Xin FENG ; Wen LIU ; Yongtuan LI ; Jian WU ; De HUAI ; Dongsheng GU ; Hanqiang LU ; Xinyi SHI ; Huiping YE ; Yan JIANG ; Weitian ZHANG ; Yu XU ; Zhenxiao HUANG ; Huabin LI
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(4):285-291
This consensus will introduce the characteristics of fillers used in the surgical cavities of domestic nasal surgery patients based on relevant literature and expert opinions. It will also provide recommendations for the selection of cavity fillers for different nasal diseases, with chronic sinusitis as a representative example.
Humans
;
Nasal Cavity/surgery*
;
Nasal Surgical Procedures
;
China
;
Consensus
;
Sinusitis/surgery*
;
Dermal Fillers
4.Strychni Semen and its active compounds promote axon regeneration following peripheral nerve injury by suppressing myeloperoxidase in the dorsal root ganglia.
Yan ZHANG ; Xin-Yue ZHAO ; Meng-Ting LIU ; Zhu-Chen ZHOU ; Hui-Bin CHENG ; Xu-Hong JIANG ; Yan-Rong ZHENG ; Zhong CHEN
Journal of Integrative Medicine 2025;23(2):169-181
OBJECTIVE:
Treating peripheral nerve injury (PNI) presents a clinical challenge due to limited axon regeneration. Strychni Semen, a traditional Chinese medicine, is clinically used for numbness and hemiplegia. However, its role in promoting functional recovery after PNI and the related mechanisms have not yet been systematically studied.
METHODS:
A mouse model of sciatic nerve crush (SNC) injury was established and the mice received drug treatment via intragastric gavage, followed by behavioral assessments (adhesive removal test, hot-plate test and Von Frey test). Transcriptomic analyses were performed to examine gene expression in the dorsal root ganglia (DRGs) from the third to the sixth lumbar vertebrae, so as to identify the significantly differentially expressed genes. Immunofluorescence staining was used to assess the expression levels of superior cervical ganglia neural-specific 10 protein (SCG10). The ultra-trace protein detection technique was used to evaluate changes in gene expression levels.
RESULTS:
Strychni Semen and its active compounds (brucine and strychnine) improved functional recovery in mice following SNC injury. Transcriptomic data indicated that Strychni Semen and its active compounds initiated transcriptional reprogramming that impacted cellular morphology and extracellular matrix remodeling in DRGs after SNC, suggesting potential roles in promoting axon regeneration. Imaging data further confirmed that Strychni Semen and its active compounds facilitated axon regrowth in SNC-injured mice. By integrating protein-protein interaction predictions, ultra-trace protein detection, and molecular docking analysis, we identified myeloperoxidase as a potentially critical factor in the axon regenerative effects conferred by Strychni Semen and its active compounds.
CONCLUSION
Strychni Semen and its active compounds enhance sensory function by promoting axonal regeneration after PNI. These findings establish a foundation for the future applications of Strychni Semen and highlight novel therapeutic strategies and drug targets for axon regeneration. Please cite this article as: Zhang Y, Zhao XY, Liu MT, Zhou ZC, Cheng HB, Jiang XH, Zheng YR, Chen Z. Strychni Semen and its active compounds promote axon regeneration following peripheral nerve injury by suppressing myeloperoxidase in the dorsal root ganglia. J Integr Med. 2025; 23(2): 169-181.
Animals
;
Nerve Regeneration/drug effects*
;
Mice
;
Peripheral Nerve Injuries/physiopathology*
;
Male
;
Ganglia, Spinal/enzymology*
;
Axons/physiology*
;
Peroxidase/antagonists & inhibitors*
;
Mice, Inbred C57BL
;
Drugs, Chinese Herbal/pharmacology*
;
Disease Models, Animal
;
Strychnine/pharmacology*
5.Associations between Pesticide Metabolites and Decreased Estimated Glomerular Filtration Rate Among Solar Greenhouse Workers: A Specialized Farmer Group.
Teng Long YAN ; Xin SONG ; Xiao Dong LIU ; Wu LIU ; Yong Lan CHEN ; Xiao Mei ZHANG ; Xiang Juan MENG ; Bin Shuo HU ; Zhen Xia KOU ; Tian CHEN ; Xiao Jun ZHU
Biomedical and Environmental Sciences 2025;38(2):265-269
6.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.
7.Coronary artery perforation after using shockwave balloon during percutaneous coronary intervention treatment:a case report
Chen-Ji XU ; Fei LI ; Fa ZHENG ; Bin ZHANG ; Feng-Xia QU ; Jian-Meng WANG ; Ya-Qun ZHOU ; Xian-Liang LI ; Song-Tao WANG ; Yan SHAO ; Chang-Hong LU
Chinese Journal of Interventional Cardiology 2024;32(7):405-408
Coronary perforation is when a contrast agent or blood flows outside a blood vessel through a tear in a coronary artery.In this case,we reported a case of percutaneous coronary intervention for coronary calcified lesions,which led to iatrogenic coronary perforation and cardiac tamponade after the use of Shockwave balloon to treat intracoronary calcified nodules,and the management of PCI-related CAP was systematically reviewed through the literature.
8.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
9.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
10.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.

Result Analysis
Print
Save
E-mail