1.Research on the Correlation between Balance Function and Core Muscles in Patients With Adolescent Idiopathic Scoliosis
Si-Jia LI ; Qing YUE ; Qian-Jin LIU ; Yan-Hua LIANG ; Tian-Tian ZHOU ; Xiao-Song LI ; Tian-Yang FENG ; Tong ZHANG
Neurospine 2025;22(1):264-275
Objective:
This study aimed to explore the correlation between balance function and core muscle activation in patients with adolescent idiopathic scoliosis (AIS), compared to healthy individuals.
Methods:
A total of 24 AIS patients and 25 healthy controls were recruited. The limits of stability (LOS) test were conducted to assess balance function, while surface electromyography was used to measure the activity of core muscles, including the internal oblique, external oblique, and multifidus. Diaphragm thickness was measured using ultrasound during different postural tasks. Center of pressure (COP) displacement and trunk inclination distance were also recorded during the LOS test.
Results:
AIS patients showed significantly greater activation of superficial core muscles, such as the internal and external oblique muscles, compared to the control group (p < 0.05). Diaphragm activation was lower in AIS patients during balance tasks (p < 0.01). Although no significant difference was observed in COP displacement between the groups, trunk inclination was significantly greater in the AIS group during certain tasks (p < 0.05).
Conclusion
These findings suggest distinct postural control patterns in AIS patients, highlighting the importance of targeted interventions to improve balance and core muscle function in this population.
2.Research on the Correlation between Balance Function and Core Muscles in Patients With Adolescent Idiopathic Scoliosis
Si-Jia LI ; Qing YUE ; Qian-Jin LIU ; Yan-Hua LIANG ; Tian-Tian ZHOU ; Xiao-Song LI ; Tian-Yang FENG ; Tong ZHANG
Neurospine 2025;22(1):264-275
Objective:
This study aimed to explore the correlation between balance function and core muscle activation in patients with adolescent idiopathic scoliosis (AIS), compared to healthy individuals.
Methods:
A total of 24 AIS patients and 25 healthy controls were recruited. The limits of stability (LOS) test were conducted to assess balance function, while surface electromyography was used to measure the activity of core muscles, including the internal oblique, external oblique, and multifidus. Diaphragm thickness was measured using ultrasound during different postural tasks. Center of pressure (COP) displacement and trunk inclination distance were also recorded during the LOS test.
Results:
AIS patients showed significantly greater activation of superficial core muscles, such as the internal and external oblique muscles, compared to the control group (p < 0.05). Diaphragm activation was lower in AIS patients during balance tasks (p < 0.01). Although no significant difference was observed in COP displacement between the groups, trunk inclination was significantly greater in the AIS group during certain tasks (p < 0.05).
Conclusion
These findings suggest distinct postural control patterns in AIS patients, highlighting the importance of targeted interventions to improve balance and core muscle function in this population.
3.Research on the Correlation between Balance Function and Core Muscles in Patients With Adolescent Idiopathic Scoliosis
Si-Jia LI ; Qing YUE ; Qian-Jin LIU ; Yan-Hua LIANG ; Tian-Tian ZHOU ; Xiao-Song LI ; Tian-Yang FENG ; Tong ZHANG
Neurospine 2025;22(1):264-275
Objective:
This study aimed to explore the correlation between balance function and core muscle activation in patients with adolescent idiopathic scoliosis (AIS), compared to healthy individuals.
Methods:
A total of 24 AIS patients and 25 healthy controls were recruited. The limits of stability (LOS) test were conducted to assess balance function, while surface electromyography was used to measure the activity of core muscles, including the internal oblique, external oblique, and multifidus. Diaphragm thickness was measured using ultrasound during different postural tasks. Center of pressure (COP) displacement and trunk inclination distance were also recorded during the LOS test.
Results:
AIS patients showed significantly greater activation of superficial core muscles, such as the internal and external oblique muscles, compared to the control group (p < 0.05). Diaphragm activation was lower in AIS patients during balance tasks (p < 0.01). Although no significant difference was observed in COP displacement between the groups, trunk inclination was significantly greater in the AIS group during certain tasks (p < 0.05).
Conclusion
These findings suggest distinct postural control patterns in AIS patients, highlighting the importance of targeted interventions to improve balance and core muscle function in this population.
4.An assessment model for efficacy of autologous CD19 chimeric antigen receptor T-cell therapy and relapse or refractory diffuse large B-cell lymphoma risk.
Bin XUE ; Yifan LIU ; Min ZHANG ; Gangfeng XIAO ; Xiu LUO ; Lili ZHOU ; Shiguang YE ; Yan LU ; Wenbin QIAN ; Li WANG ; Ping LI ; Aibin LIANG
Chinese Medical Journal 2025;138(1):108-110
5.Research on the Correlation between Balance Function and Core Muscles in Patients With Adolescent Idiopathic Scoliosis
Si-Jia LI ; Qing YUE ; Qian-Jin LIU ; Yan-Hua LIANG ; Tian-Tian ZHOU ; Xiao-Song LI ; Tian-Yang FENG ; Tong ZHANG
Neurospine 2025;22(1):264-275
Objective:
This study aimed to explore the correlation between balance function and core muscle activation in patients with adolescent idiopathic scoliosis (AIS), compared to healthy individuals.
Methods:
A total of 24 AIS patients and 25 healthy controls were recruited. The limits of stability (LOS) test were conducted to assess balance function, while surface electromyography was used to measure the activity of core muscles, including the internal oblique, external oblique, and multifidus. Diaphragm thickness was measured using ultrasound during different postural tasks. Center of pressure (COP) displacement and trunk inclination distance were also recorded during the LOS test.
Results:
AIS patients showed significantly greater activation of superficial core muscles, such as the internal and external oblique muscles, compared to the control group (p < 0.05). Diaphragm activation was lower in AIS patients during balance tasks (p < 0.01). Although no significant difference was observed in COP displacement between the groups, trunk inclination was significantly greater in the AIS group during certain tasks (p < 0.05).
Conclusion
These findings suggest distinct postural control patterns in AIS patients, highlighting the importance of targeted interventions to improve balance and core muscle function in this population.
6.Research on the Correlation between Balance Function and Core Muscles in Patients With Adolescent Idiopathic Scoliosis
Si-Jia LI ; Qing YUE ; Qian-Jin LIU ; Yan-Hua LIANG ; Tian-Tian ZHOU ; Xiao-Song LI ; Tian-Yang FENG ; Tong ZHANG
Neurospine 2025;22(1):264-275
Objective:
This study aimed to explore the correlation between balance function and core muscle activation in patients with adolescent idiopathic scoliosis (AIS), compared to healthy individuals.
Methods:
A total of 24 AIS patients and 25 healthy controls were recruited. The limits of stability (LOS) test were conducted to assess balance function, while surface electromyography was used to measure the activity of core muscles, including the internal oblique, external oblique, and multifidus. Diaphragm thickness was measured using ultrasound during different postural tasks. Center of pressure (COP) displacement and trunk inclination distance were also recorded during the LOS test.
Results:
AIS patients showed significantly greater activation of superficial core muscles, such as the internal and external oblique muscles, compared to the control group (p < 0.05). Diaphragm activation was lower in AIS patients during balance tasks (p < 0.01). Although no significant difference was observed in COP displacement between the groups, trunk inclination was significantly greater in the AIS group during certain tasks (p < 0.05).
Conclusion
These findings suggest distinct postural control patterns in AIS patients, highlighting the importance of targeted interventions to improve balance and core muscle function in this population.
7.Quantitative analysis of 10 components in Compound Dihuang oral solution by UPLC-MS/MS
Hongxia LIU ; Yanwen SUN ; Fei HAN ; Yan ZHOU ; Huajun SUN ; Liqin DING
Journal of Pharmaceutical Practice and Service 2025;43(8):390-394
Objective To develop an ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method to simultaneously determine 10 main components, including berberine, phellodendrine, specnuezhenide, mangiferin, loganin, paeoniflorin, geniposide, baicalin, and acteoside in Compound Dihuang oral solution. Methods An UPLC-MS/MS method was established with an ACQUITY UPLC BEH-C18 (2.1 mm×100 mm, 1.7 μm)column and mobile phase of 0.1% formic water(A)-methanol solution(B) in a gradient elution manner. The flow rate of mobile phase was 0.2 ml/min.The temperature of column was 30℃. The injection volume was 2 μl. The MS detection was in MRM mode. Results 10 components in Compound Dihuang oral solution had a good linear relationship within their concentration range,and the precision, repeatability, stability and recovery met the requirements. The contents of berberine, phellodendrine, specnuezhenide, mangiferin, loganin, paeoniflorin, geniposide, baicalin, and acteoside in 7 batches of samples were (89.7-95.6) μg/ml, (164.0-177.7) μg/ml, (540.0-610.0) μg/ml, (408.7-429.0) μg/ml, (726.0-825.0) μg/ml, (503.7-572.0) μg/ml, (
8.Hub biomarkers and their clinical relevance in glycometabolic disorders: A comprehensive bioinformatics and machine learning approach.
Liping XIANG ; Bing ZHOU ; Yunchen LUO ; Hanqi BI ; Yan LU ; Jian ZHOU
Chinese Medical Journal 2025;138(16):2016-2027
BACKGROUND:
Gluconeogenesis is a critical metabolic pathway for maintaining glucose homeostasis, and its dysregulation can lead to glycometabolic disorders. This study aimed to identify hub biomarkers of these disorders to provide a theoretical foundation for enhancing diagnosis and treatment.
METHODS:
Gene expression profiles from liver tissues of three well-characterized gluconeogenesis mouse models were analyzed to identify commonly differentially expressed genes (DEGs). Weighted gene co-expression network analysis (WGCNA), machine learning techniques, and diagnostic tests on transcriptome data from publicly available datasets of type 2 diabetes mellitus (T2DM) patients were employed to assess the clinical relevance of these DEGs. Subsequently, we identified hub biomarkers associated with gluconeogenesis-related glycometabolic disorders, investigated potential correlations with immune cell types, and validated expression using quantitative polymerase chain reaction in the mouse models.
RESULTS:
Only a few common DEGs were observed in gluconeogenesis-related glycometabolic disorders across different contributing factors. However, these DEGs were consistently associated with cytokine regulation and oxidative stress (OS). Enrichment analysis highlighted significant alterations in terms related to cytokines and OS. Importantly, osteomodulin ( OMD ), apolipoprotein A4 ( APOA4 ), and insulin like growth factor binding protein 6 ( IGFBP6 ) were identified with potential clinical significance in T2DM patients. These genes demonstrated robust diagnostic performance in T2DM cohorts and were positively correlated with resting dendritic cells.
CONCLUSIONS
Gluconeogenesis-related glycometabolic disorders exhibit considerable heterogeneity, yet changes in cytokine regulation and OS are universally present. OMD , APOA4 , and IGFBP6 may serve as hub biomarkers for gluconeogenesis-related glycometabolic disorders.
Machine Learning
;
Humans
;
Computational Biology/methods*
;
Biomarkers/metabolism*
;
Diabetes Mellitus, Type 2/genetics*
;
Animals
;
Mice
;
Gluconeogenesis/physiology*
;
Gene Expression Profiling
;
Transcriptome/genetics*
;
Gene Regulatory Networks/genetics*
;
Clinical Relevance
9.Design, synthesis and pharmacological evaluation of 1,2,3,4-tetrahydrobenzofuro2,3-cpyridine derivatives as p21-activated kinase 4 inhibitors for treatment of pancreatic cancer.
Yang LI ; Yan FANG ; Xiaoyu CHEN ; Linjiang TONG ; Fang FENG ; Qianqian ZHOU ; Shulun CHEN ; Jian DING ; Hua XIE ; Ao ZHANG
Acta Pharmaceutica Sinica B 2025;15(1):438-466
The p21-activated kinase 4 (PAK4), a key regulator of malignancy, is negatively correlated with immune infiltration and has become an emergent drug target of cancer therapy. Given the lack of high efficacy PAK4 inhibitors, we herein reported the identification of a novel inhibitor 13 bearing a tetrahydrobenzofuro[2,3-c]pyridine tricyclic core and possessing high potency against MIA PaCa-2 and Pan02 cell lines with IC50 values of 0.38 and 0.50 μmol/L, respectively. This compound directly binds to PAK4 in a non-ATP competitive manner. In the mouse Pan02 model, compound 13 exhibited significant tumor growth inhibition at a dose of 100 mg/kg, accompanied by reduced levels of PAK4 and its phosphorylation together with immune infiltration in mice tumor tissue. Overall, compound 13 is a novel allosteric PAK4 inhibitor with a unique tricyclic structural feature and high potency both in vitro and in vivo, thus making it worthy of further exploration.
10.Pitavastatin-loaded procyanidins self-assembled nanoparticles alleviate advanced atherosclerosis via modulating macrophage efferocytosis and cholesterol efflux.
Yizhou WU ; Hongyan ZHOU ; Hao LIU ; Jiayao HU ; Yue SUN ; Wei YAN ; Chunyi TONG ; Ying KONG ; Bin LIU
Acta Pharmaceutica Sinica B 2025;15(6):3305-3320
Advanced atherosclerosis is the major global cause of death, as featured by the aggregation of apoptotic cells (ACs) in necrotic cores. The defective efferocytosis and dysfunctional cholesterol efflux of macrophages are the main reasons for forming necrotic cores in advanced atherosclerosis. In this study, we constructed self-assembled procyanidins (PC) NPs for loading pitavastatin (Pita). The designed HA@PC@Pita NPs with hyaluronic acid (HA) modification combined the advantages of efferocytosis restoration of Pita and cholesterol efflux enhancement of PC. In vitro assay indicated that HA@PC@Pita NPs could induce M1/M2 repolarization and upregulate ERK5/Mertk expression to restore efferocytosis of macrophages. Simultaneously, HA@PC@Pita NPs notably promoted cholesterol efflux by promoting macrophage lipophagy, a selective autophagy of lipid droplets. In vivo study showed that HA@PC@Pita NPs cleared necrotic core and enhanced plaque stability in the ApoE -/- mice model with advanced atherosclerosis. Taken together, this study demonstrated the potential of HA@PC@Pita NPs for the treatment of advanced atherosclerosis.

Result Analysis
Print
Save
E-mail