1.Effect of Gynostemma pentaphyllum Alcohol Extract on Glucose and Lipid Metabolism Disorders in db/db Mice Based on Transcriptomics and Gut Microbiota
Yifei ZHU ; Lei DING ; Wei LIU ; Yahui SUN ; Lingling QIN ; Lili WU ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):80-89
ObjectiveTo investigate the efficacy and underlying mechanisms of Gynostemma pentaphyllum alcohol extract in improving glucose and lipid metabolism disorders in db/db mice through transcriptomics and gut microbiota analysis. MethodsEighteen db/db mice were randomly assigned to the model(DM) group, metformin(MET) group, and G. pentaphyllum alcohol extract(GP) group, with six mice in each group, based on stratification of fasting blood glucose and body weight. An additional six db/m mice were selected as the normal control(NC) group. Mice in the NC and DM groups were administered deionized water (10 mL·kg-1) daily. The MET group received metformin (0.195 g·kg-1) by gavage. The GP group was treated with G. pentaphyllum alcohol extract (3.9 g·kg-1) by gavage for six weeks. Fasting blood glucose was measured every two weeks. After six weeks of intervention, serum levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine (CREA), and blood urea nitrogen (BUN) were assessed. Enzyme-linked immunosorbent assay (ELISA) was used to measure insulin (FINS), adiponectin (ADP), and tumor necrosis factor-α (TNF-α). Hematoxylin-eosin (HE) staining was used to observe liver histomorphology, periodic acid-Schiff (PAS) staining was employed to assess hepatic glycogen synthesis, and Oil Red O staining was used to detect hepatic lipid deposition. Liver transcriptomic data were used to identify differentially expressed genes in the liver and conduct enrichment analysis. Real-time PCR was employed to verify the expression levels of adiponectin gene (Adipoq), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor α (PPARα), glucokinase (GCK), forkhead box (Fox)O1, FoxO3, phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase (G6PC). Metagenomic sequencing was conducted to analyze changes in gut microbiota composition. ResultsCompared with the NC group, the DM group exhibited significantly elevated fasting blood glucose (P<0.01), serum AST, ALT, TC, TG, LDL-C, and HDL-C (P<0.01). FINS, homeostatic model assessment for insulin resistance (HOMA-IR), and the inflammatory cytokine TNF-α were significantly increased (P<0.01), while ADP was significantly decreased (P<0.05). Histological analysis confirmed severe hepatic steatosis and excessive lipid accumulation in the DM group, along with markedly reduced glycogen synthesis. Compared with the DM group, the GP group showed significantly decreased fasting blood glucose (P<0.01), reduced serum TC, LDL-C, and HDL-C levels (P<0.05), significantly decreased serum TG and AST levels (P<0.01), significantly reduced FINS, HOMA-IR, and TNF-α levels (P<0.01), and significantly increased ADP (P<0.01). Hepatic steatosis and lipid deposition were significantly alleviated, while glycogen synthesis was markedly enhanced. Transcriptomic differential and enrichment analyses suggested that the mechanisms by which G. pentaphyllum alcohol extract improved hepatic glucose and lipid metabolism in db/db mice may involve regulation of the AMPK and FoxO signaling pathways. Real-time PCR results confirmed that expression of PGC-1α, PEPCK, G6PC, FoxO1, and FoxO3 was significantly downregulated following treatment with G. pentaphyllum alcohol extract (P<0.05, P<0.01), whereas mRNA expression of Adipoq, PPARα, GCK, and AMPK was significantly upregulated (P<0.05, P<0.01). Metagenomic analysis showed that the relative abundance of Lactobacillus, Alistipes, and Akkermansia species was higher in the GP group than in the DM group. ConclusionG. pentaphyllum alcohol extract may improve glucose and lipid metabolism disorders in db/db mice by regulating the hepatic AMPK/PPARα pathway to suppress lipid deposition and alleviate hepatic steatosis, by inhibiting gluconeogenesis through the AMPK/PGC-1α and FoxO pathways to lower fasting blood glucose, and by increasing the abundance of beneficial gut bacteria such as Lactobacillus, Alistipes, and Akkermansia to restore gut microbiota balance.
2.Effect of Gynostemma pentaphyllum Alcohol Extract on Glucose and Lipid Metabolism Disorders in db/db Mice Based on Transcriptomics and Gut Microbiota
Yifei ZHU ; Lei DING ; Wei LIU ; Yahui SUN ; Lingling QIN ; Lili WU ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):80-89
ObjectiveTo investigate the efficacy and underlying mechanisms of Gynostemma pentaphyllum alcohol extract in improving glucose and lipid metabolism disorders in db/db mice through transcriptomics and gut microbiota analysis. MethodsEighteen db/db mice were randomly assigned to the model(DM) group, metformin(MET) group, and G. pentaphyllum alcohol extract(GP) group, with six mice in each group, based on stratification of fasting blood glucose and body weight. An additional six db/m mice were selected as the normal control(NC) group. Mice in the NC and DM groups were administered deionized water (10 mL·kg-1) daily. The MET group received metformin (0.195 g·kg-1) by gavage. The GP group was treated with G. pentaphyllum alcohol extract (3.9 g·kg-1) by gavage for six weeks. Fasting blood glucose was measured every two weeks. After six weeks of intervention, serum levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine (CREA), and blood urea nitrogen (BUN) were assessed. Enzyme-linked immunosorbent assay (ELISA) was used to measure insulin (FINS), adiponectin (ADP), and tumor necrosis factor-α (TNF-α). Hematoxylin-eosin (HE) staining was used to observe liver histomorphology, periodic acid-Schiff (PAS) staining was employed to assess hepatic glycogen synthesis, and Oil Red O staining was used to detect hepatic lipid deposition. Liver transcriptomic data were used to identify differentially expressed genes in the liver and conduct enrichment analysis. Real-time PCR was employed to verify the expression levels of adiponectin gene (Adipoq), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor α (PPARα), glucokinase (GCK), forkhead box (Fox)O1, FoxO3, phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase (G6PC). Metagenomic sequencing was conducted to analyze changes in gut microbiota composition. ResultsCompared with the NC group, the DM group exhibited significantly elevated fasting blood glucose (P<0.01), serum AST, ALT, TC, TG, LDL-C, and HDL-C (P<0.01). FINS, homeostatic model assessment for insulin resistance (HOMA-IR), and the inflammatory cytokine TNF-α were significantly increased (P<0.01), while ADP was significantly decreased (P<0.05). Histological analysis confirmed severe hepatic steatosis and excessive lipid accumulation in the DM group, along with markedly reduced glycogen synthesis. Compared with the DM group, the GP group showed significantly decreased fasting blood glucose (P<0.01), reduced serum TC, LDL-C, and HDL-C levels (P<0.05), significantly decreased serum TG and AST levels (P<0.01), significantly reduced FINS, HOMA-IR, and TNF-α levels (P<0.01), and significantly increased ADP (P<0.01). Hepatic steatosis and lipid deposition were significantly alleviated, while glycogen synthesis was markedly enhanced. Transcriptomic differential and enrichment analyses suggested that the mechanisms by which G. pentaphyllum alcohol extract improved hepatic glucose and lipid metabolism in db/db mice may involve regulation of the AMPK and FoxO signaling pathways. Real-time PCR results confirmed that expression of PGC-1α, PEPCK, G6PC, FoxO1, and FoxO3 was significantly downregulated following treatment with G. pentaphyllum alcohol extract (P<0.05, P<0.01), whereas mRNA expression of Adipoq, PPARα, GCK, and AMPK was significantly upregulated (P<0.05, P<0.01). Metagenomic analysis showed that the relative abundance of Lactobacillus, Alistipes, and Akkermansia species was higher in the GP group than in the DM group. ConclusionG. pentaphyllum alcohol extract may improve glucose and lipid metabolism disorders in db/db mice by regulating the hepatic AMPK/PPARα pathway to suppress lipid deposition and alleviate hepatic steatosis, by inhibiting gluconeogenesis through the AMPK/PGC-1α and FoxO pathways to lower fasting blood glucose, and by increasing the abundance of beneficial gut bacteria such as Lactobacillus, Alistipes, and Akkermansia to restore gut microbiota balance.
3.Association of leukocyte telomere length with the risk of digestive diseases: A large-scale cohort study.
Hongqun YANG ; Lanlan CHEN ; Yahui LIU
Chinese Medical Journal 2025;138(1):60-67
BACKGROUND:
Leukocyte telomere length (LTL) shortening, a biomarker of telomere attrition, has been linked to multiple diseases. However, the relationship between LTL and digestive diseases remains uncertain. This study aimed to investigate the association between LTL and the risk of digestive diseases.
METHODS:
A cohort analysis of over 500,000 participants from the UK Biobank (UKB) between 2006 and 2021 was conducted to estimate the associations of LTL with more than 90 common digestive diseases. LTL was quantified using multiplex quantitative polymerase chain reaction, and cases of each disease were determined according to inpatient and primary care data. Multivariable Cox proportional hazards regression analysis was used to evaluate the associations of LTL with the risk of digestive diseases. Furthermore, such associations were also evaluated after stratification by sex and ethnicity.
RESULTS:
After a mean follow-up time of 11.8 years, over 20 International Classification of Diseases, 10th Revision ( ICD-10 ) codes were showed to be associated with telomere attrition. LTL shortening is associated with an increased risk of several digestive diseases, including gastroesophageal reflux disease (K21: hazard ratio [HR] = 1.30, 95% confidence interval [95% CI]: 1.19-1.42), esophageal ulcer (K221: HR = 1.81, 95% CI: 1.22-2.71), Barrett's esophagus (K227: HR = 1.58, 95% CI: 1.14-2.17), gastritis (K29: HR = 1.39, 95% CI: 1.26-1.52), duodenal ulcer (K26: HR = 1.55, 95% CI: 1.14-2.12), functional dyspepsia (K30X: HR = 1.36, 95% CI: 1.06-1.69), non-alcoholic fatty liver disease (NAFLD) (K760: HR = 1.39, 95% CI: 1.09-1.78), liver cirrhosis (K74: HR = 4.73, 95% CI: 3.27-6.85), cholangitis (K830: HR = 2.55, 95% CI: 1.30-5.00), and hernia (K43: HR = 1.50, 95% CI: 1.17-1.94; K44: HR = 1.29, 95% CI: 1.17-1.42). The risk of rectal polyps (K621: HR = 0.77, 95% CI: 0.63-0.92) decreased per unit shortening of LTL.
CONCLUSIONS
This study suggests that LTL shortening is associated with an increased risk of most digestive diseases except for rectal polyps. These findings may provide some clues for understanding the pathogenesis of digestive diseases.
Humans
;
Male
;
Female
;
Middle Aged
;
Cohort Studies
;
Leukocytes/metabolism*
;
Telomere/genetics*
;
Proportional Hazards Models
;
Adult
;
Digestive System Diseases/genetics*
;
Aged
;
Risk Factors
;
Telomere Shortening
4.Natural product mediated mesenchymal-epithelial remodeling by covalently binding ENO1 to degrade m6A modified β-catenin mRNA.
Tianyang CHEN ; Guangju LIU ; Sisi CHEN ; Fengyuan ZHANG ; Shuoqian MA ; Yongping BAI ; Quan ZHANG ; Yahui DING
Acta Pharmaceutica Sinica B 2025;15(1):467-483
The transition of cancer cells from epithelial state to mesenchymal state awarded hepatocellular carcinoma (HCC) stem cell properties and induced tumorigenicity, drug resistance, and high recurrence rate. Reversing the mesenchymal state to epithelial state by inducing mesenchymal-epithelial remodeling could inhibit the progression of HCC. Using high-throughput screening, chrysin was selected from natural products to reverse epithelial-mesenchymal transition (EMT) by selectively increasing CDH1 expression. The target identification suggested chrysin exerted its anti-HCC effect through covalently and specifically binding threonine 205 (Thr205) of alpha-enolase (ENO1). For the first time, we revealed that ENO1 bound β-catenin mRNA, and recruited YTHDF2 to identify the m6A modified β-catenin in the 3'-UTR region to degrade β-catenin mRNA. Eventually, the CDH1 gene expression was improved through the regulation of β-catenin mRNA. ENO1/β-catenin mRNA interaction might be a promising target for cellular plasticity reprogramming. Moreover, chrysin could mediate mesenchymal‒epithelial remodeling through increasing degradation of β-catenin mRNA by promoting the binding of ENO1 and β-catenin mRNA. To the best of our knowledge, chrysin is the first reported small molecule inducing β-catenin mRNA degradation through binding to ENO1. The water-soluble derivative of chrysin may be a natural product-derived lead compound for circumventing metastasis, recurrence, and drug resistance of HCC by mediating mesenchymal‒epithelial remodeling.
5.A novel carbonyl reductase for the synthesis of (R)-tolvaptan.
Yahui LIU ; Xuming WANG ; Shuo MA ; Keyu LIU ; Wei LI ; Lulu ZHANG ; Jie DU ; Honglei ZHANG
Chinese Journal of Biotechnology 2025;41(1):321-332
Screening carbonyl reductases with the ability to catalyze the reduction of complex carbonyl compounds is of great significance for the biosynthesis of R-tolvaptan(R-TVP). In this study, the target carbonyl reductase in the crude enzyme extract of rabbit liver was separated, purified, and identified by ammonium sulfate precipitation, gel-filtration chromatography, ion exchange chromatography, affinity chromatography, and protein mass spectrometry. With the rabbit liver genome as the template, the gene encoding the carbonyl reductase rlsr5 was amplified by PCR and the recombinant strain was successfully constructed. After RLSR5 was purified by affinity chromatography, its enzymatic properties were characterized. The results indicated that the gene sequence of rlsr5 was 972 bp, encoding a protein with a molecular weight of 40 kDa. RLSR5 was a dimeric protein, and each monomer was composed of a (α/β)8-barrel structure. RLSR5 could asymmetrically reduce 7-chloro-1-[2-methyl-4-[(2- methylbenzoyl)amino]benzoyl]-5-oxo-2,3,4,5-tetrahydro-1H-1-benzazepine (prochiral ketone, PK) to synthesize R-TVP. The specific activity of the enzyme was 36.64 U/mg, and the optical purity of the product was 99%. This enzyme showcased the optimal performance at pH 6.0 and 30 °C. It was independent of metal ions, with the activity enhanced by Mn2+. This study lays a foundation for the biosynthesis of tolvaptan of optical grade.
Animals
;
Rabbits
;
Alcohol Oxidoreductases/biosynthesis*
;
Recombinant Proteins/metabolism*
;
Escherichia coli/metabolism*
;
Liver/enzymology*
6.Identification and expression analysis of β-amylase gene family members in alfalfa under saline-alkali stress.
Hongyu QU ; Lishuang ZHANG ; Yahui TANG ; Lei LIU ; Rui GUO ; Weileng GUO ; Changhong GUO
Chinese Journal of Biotechnology 2025;41(2):719-735
Beta-amylases (BAMs), key enzymes in starch hydrolysis, play an important role in plant growth, development, and resistance to abiotic stress. To mine the saline-alkali tolerance-related BAM genes in alfalfa (Medicago sativa L.), we identified MsBAM genes in the whole genome. The physicochemical properties, phylogeny, gene structures, conserved motifs, secondary structures, promoter cis-acting elements, chromosome localization, and gene replication relationships of BAM gene family members were analyzed. RNA-seq and quantitative real-time PCR (qRT-PCR) were employed to analyze the expression patterns of BAM family members under saline-alkali stress. The results showed that 54 BAM genes were identified in the genome, which were classified into 8 subgroups according to the phylogenetic tree. The members of the same subgroup had similar gene structures except that those of subgroups 1 and 7 had large differences. Conserved motif analysis showed that all MsBAM proteins had a typical glycohydrolysis domain. The chromosome localization analysis showed that MsBAM gene family members were unevenly distributed on 27 chromosomes. The duplication of gene segments led to the increase in BAM gene number in alfalfa. The promoters of BAM genes contained a large number of elements in response to plant hormones and stress. Transcriptome data and qRT-PCR results showed that the expression levels of most MsBAM genes were up-regulated in response to saline-alkali stress. Under the saline-alkali stress, the expression levels of 28 genes, including MsBAM6, were up-regulated on days 1 and 7, and those of 5 genes, including MsBAM9, were up-regulated by over 2 folds. In addition, under salt-alkali stress, BAM activity and soluble sugar content were significantly increased. These results indicate that BAM genes play a key role in alfalfa in response to saline-alkali stress, laying a foundation for further research in this field.
Medicago sativa/physiology*
;
beta-Amylase/metabolism*
;
Phylogeny
;
Gene Expression Regulation, Plant
;
Stress, Physiological/genetics*
;
Multigene Family
;
Alkalies
;
Plant Proteins/genetics*
7.Advances in research on shift work associated circadian rhythm disruption and obesity
Yangyan LIU ; He YU ; Lilan HUANG ; Jing CUI ; Yahui LU ; Ying FANG
Journal of Environmental and Occupational Medicine 2024;41(10):1198-1203
Circadian rhythm disruption is a universal phenomenon that is associated with a combination of internal and external factors, with internal factors referring to disturbances in the intrinsic regulatory mechanisms of sleep-wake behavior, and external factors including changes in sleep habits, severe sleep deprivation, shift work, social jet lag, prolonged exposure to nighttime light, and late nighttime eating. Shift work, as a common occupational factor, can lead to disruption of the central/ peripheral biological clock which regulates the expression of almost the entire genome, and the disruption of the biological clock can lead to genetic variants, hormonal secretion abnormalities, insulin resistance, oxidative stress, and systemic inflammation, which are risk factors for obesity. In the context of rapid advancement of global economy and industrialization, the prevalence of simple obesity in the traditional cognitive category is increasing in a linear trend, while the incidence of abdominal obesity, which is closely related to metabolic disorders, is also showing an increasing trend. In recent years, the mechanism of circadian rhythm disorder and obesity associated with shift work has attracted much attention, and this article summarized the latest research progress, aiming to provide a basis for the prevention and treatment of obesity caused by circadian rhythm disruption due to shift work.
8.Shugan Jianpi Yangxin Prescription Regulates Orexin-A and Its Receptors in Mouse Model of Insomnia
Zhen WANG ; Jie ZHANG ; Feixiang LIU ; Jiangyan SUN ; Yahui GAO ; Yuxin ZHENG ; Min ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(10):54-61
ObjectiveTo investigate the interventional effects of Shugan Jianpi Yangxin prescription on the expression of orexin-A (OXA), orexin-1 receptor (OX1R), and orexin-2 receptor (OX2R) in the mouse model of insomnia. MethodThe mouse model of insomnia was established by intraperitoneal injection of DL-4-chlorophenylalanine (PCPA). Fifty BALB/c mice were randomized into a blank group, a model group, an eszopiclone (0.13 mg·kg-1) group, and low- and high-dose (8.4 and 33.6 g·kg-1, respectively) Shugan Jianpi Yangxin prescription groups and treated with the corresponding drugs for 14 consecutive days. The weight changes of mice were monitored, and Morris water maze and pentobarbital-induced sleep tests were conducted. Immunohistochemistry (IHC) was employed to examine the expression of OXA in the hypothalamus. Enzyme-linked immunosorbent assay was used to measure the levels of OXA and 5-hydroxytryptamine (5-HT) in the hypothalamus, serum, and spleen. Real-time fluorescence quantitative polymerase chain reaction was employed to determine the mRNA levels of OXA, OX1R, and OX2R in the hypothalamus. ResultCompared with the blank group, the model group had decreased body weight (P<0.01), increased escape latency (P<0.01), increased sleep latency (P<0.01), shortened sleep duration (P<0.01), elevated OXA level and lowered 5-HT level in the hypothalamus, serum, and spleen (P<0.05), and up-regulated mRNA levels of OXA, OX1R, and OX2R in the hypothalamus (P<0.01). Compared with the model group, the low- and high-dose groups of Shugan Jianpi Yangxin prescription showed increased body weight (P<0.05, P<0.01), shortened escape latency (P<0.05), shortened sleep latency and prolonged sleep duration (P<0.01), and lowered OXA level and elevated 5-HT level in the hypothalamus, serum, and spleen (P<0.05, P<0.01). Moreover, the two doses of Shugan Jianpi Yangxin prescription down-regulated the mRNA levels of OXA, OX1R, and OX2R in the hypothalamus (P<0.01). ConclusionShugan Jianpi Yangxin prescription exerts sedative and hypnotic effects in mice by increasing the content of 5-HT in the brain and inhibiting the expression of OXA and its receptors in the hypothalamus.
9.Perinatal characteristics and early postnatal circulatory function changes in the larger fetus in twin pregnancy with selective intrauterine growth restriction
Yahui ZHANG ; Dan WANG ; Yunfeng LIU ; Shi SHI ; Meihua PIAO
Chinese Journal of Perinatal Medicine 2024;27(3):188-195
Objective:To explore the perinatal characteristics and early postnatal circulatory function of the larger fetus in monochorionic diamniotic twin pregnancy complicated with selective intrauterine growth restriction (sIUGR).Methods:From February 2018 to August 2022, a total of 91 larger fetuses of the sIUGR pregnancies who were hospitalized in the neonatal intensive care unit of Peking University Third Hospital were retrospectively included. The perinatal factors, clinical monitoring indicators, and echocardiographic data of the larger twins in pregnancies with three types of sIUGR were compared using one-way analysis of variance and LSD test, Kruskal-Wallis H test, Chi-square test, and Bonferroni correction. Results:The gestational age, birth weight, and placental weight were (30.6±1.5) weeks, (1 503.9±286.4) g, and (548±120) g in the type Ⅱ sIUGR larger twins and were (30.5±2.3) weeks, (1 523.5±424.4) g, and (560±109) g in type Ⅲ, which were all smaller, lower, and lighter than those in the type Ⅰ[(33.0±1.7) weeks, (2 022.1±372.3) g, and (630±131) g, respectively] (LSD test, all P<0.05). Compared with type Ⅰ sIUGR larger twins, type Ⅱ and Ⅲ sIUGR larger twins had longer hospital stay [36.0 d (27.0-43.0 d) and 32.0 d (15.0-47.0 d) vs. 17.0 d (9.5-22.0 d)], higher proportion of preterm births due to fetal distress [63.6% (21/33) and 75.0% (15/20) vs. 31.6% (12/38), χ2=7.30 and 9.93] (Bonferroni correction, all P<0.017); Compared with type Ⅰ sIUGR larger twins, type Ⅱ sIUGR larger twins had higher proportion of postnatal use of vasoactive drugs [45.5% (15/33) vs. 18.4% (7/38), χ2=6.04, P=0.014]. The interventricular septum thickness was larger in the type Ⅲ sIUGR larger twins than those in the type Ⅰ and Ⅱ twins [(4.4±1.4) vs. (3.8±0.9) and (3.3±0.9) mm]; the thickness of left ventricular free wall was the largest in the type Ⅲ larger twins, followed by those in the type Ⅰ and type Ⅱ [(4.6±1.3) vs. (3.1±0.7) vs. (2.7±0.6) mm]; the left ventricular end-diastolic diameter, right ventricular outflow tract diameter, right ventricular anteroposterior diameter, and pulmonary artery diameter in type Ⅰ larger twins were increased comparing with those in type Ⅱ and Ⅲ [left ventricular end-diastolic diameter: (15.0±2.1) vs. (13.4±2.3) and (12.3±3.2) mm; right ventricular outflow tract diameter: (8.7±1.4) vs. (7.3±1.4) and (7.1±0.8) mm; right ventricular anteroposterior diameter: (7.1±1.5) vs. (6.5±0.9) and (6.4±1.0) mm; pulmonary artery diameter: (6.8±1.1) vs. (6.3±0.9) and (6.3±0.8) mm] (LSD test, all P<0.05). Conclusion:The larger fetuses of type Ⅱ and Ⅲ sIUGR pregnancies had smaller gestational age and lighter birth weight who are more prone to have fetal distress, so it is necessary to strengthen dynamic monitoring and circulatory support for such neonates during the perinatal period and early postnatal period. The thickening of the left ventricular wall and interventricular septum in the early postnatal period of type Ⅲ larger fetuses may lead to the decrease of ventricular diastolic function reserve, thereby the evaluation and monitoring of the myocardial diastolic function of these neonates in the early postnatal period are critical.
10.Analysis on Current Status of Knowledge, Attitude, Practice of COVID -19 in College Students and Their Influencing Factors
Ni YAN ; Yahui FAN ; Xi LIU ; Lina WANG ; Wanru JIA ; Juhua LI ; Le MA
Chinese Medical Ethics 2024;35(3):326-331
In order to understand the current status of the knowledge, attitude and practice (KAP) about prevention and control of COVID -19 in college students, and to provide theoretical basis for prevention and control work in college campus. This study investigated the KAP of COVID -19 of 1 847 college students in Shaanxi province by questionnaire using the convenience sampling method. Chisquare test and multivariate logistic regression analysis were used to analyze the influencing factors for the KAP of COVID -19. The results demonstrated that 48.3% of the students had a higher knowledge level of COVID -19, 11.7% had a fear attitude and 39.6% had good protective practices. Logistic regression results showed that female and urban household college students had higher cognitive level of COVID -19. The college students with anxiety state were more likely to have fear attitude. Students of female, urban household, anxiety, higher cognition and fear attitude showed better protective practices. The above results indicated that the knowledge level of COVID -19 in college students are not enough, and the attitude and protective practices need to be further improved. Therefore, relevant departments should follow the rules of KAP, carry out targeted propaganda and education on COVID -19 for college students, to improve their ability to cope with public health emergencies.

Result Analysis
Print
Save
E-mail