1.Mechanisms of Gut Microbiota Influencing Reproductive Function via The Gut-Gonadal Axis
Ya-Qi ZHAO ; Li-Li QI ; Jin-Bo WANG ; Xu-Qi HU ; Meng-Ting WANG ; Hai-Guang MAO ; Qiu-Zhen SUN
Progress in Biochemistry and Biophysics 2025;52(5):1152-1164
Reproductive system diseases are among the primary contributors to the decline in social fertility rates and the intensification of aging, posing significant threats to both physical and mental health, as well as quality of life. Recent research has revealed the substantial potential of the gut microbiota in improving reproductive system diseases. Under healthy conditions, the gut microbiota maintains a dynamic balance, whereas dysfunction can trigger immune-inflammatory responses, metabolic disorders, and other issues, subsequently leading to reproductive system diseases through the gut-gonadal axis. Reproductive diseases, in turn, can exacerbate gut microbiota imbalance. This article reviews the impact of the gut microbiota and its metabolites on both male and female reproductive systems, analyzing changes in typical gut microorganisms and their metabolites related to reproductive function. The composition, diversity, and metabolites of gut bacteria, such as Bacteroides, Prevotella, and Firmicutes, including short-chain fatty acids, 5-hydroxytryptamine, γ-aminobutyric acid, and bile acids, are closely linked to reproductive function. As reproductive diseases develop, intestinal immune function typically undergoes changes, and the expression levels of immune-related factors, such as Toll-like receptors and inflammatory cytokines (including IL-6, TNF-α, and TGF-β), also vary. The gut microbiota and its metabolites influence reproductive hormones such as estrogen, luteinizing hormone, and testosterone, thereby affecting folliculogenesis and spermatogenesis. Additionally, the metabolism and absorption of vitamins can also impact spermatogenesis through the gut-testis axis. As the relationship between the gut microbiota and reproductive diseases becomes clearer, targeted regulation of the gut microbiota can be employed to address reproductive system issues in both humans and animals. This article discusses the regulation of the gut microbiota and intestinal immune function through microecological preparations, fecal microbiota transplantation, and drug therapy to treat reproductive diseases. Microbial preparations and drug therapy can help maintain the intestinal barrier and reduce chronic inflammation. Fecal microbiota transplantation involves transferring feces from healthy individuals into the recipient’s intestine, enhancing mucosal integrity and increasing microbial diversity. This article also delves into the underlying mechanisms by which the gut microbiota influences reproductive capacity through the gut-gonadal axis and explores the latest research in diagnosing and treating reproductive diseases using gut microbiota. The goal is to restore reproductive capacity by targeting the regulation of the gut microbiota. While the gut microbiota holds promise as a therapeutic target for reproductive diseases, several challenges remain. First, research on the association between gut microbiota and reproductive diseases is insufficient to establish a clear causal relationship, which is essential for proposing effective therapeutic methods targeting the gut microbiota. Second, although gut microbiota metabolites can influence lipid, glucose, and hormone synthesis and metabolism via various signaling pathways—thereby indirectly affecting ovarian and testicular function—more in-depth research is required to understand the direct effects of these metabolites on germ cells or granulosa cells. Lastly, the specific efficacy of gut microbiota in treating reproductive diseases is influenced by multiple factors, necessitating further mechanistic research and clinical studies to validate and optimize treatment regimens.
2.Synthesis of active substance 3,4-dihydroxyacetophenone from traditional Chinese medicine using Escherichia coli whole-cell bioconversion of 1-(4-hydroxyphenol)-ethanol.
Xi-Wei YUAN ; Yan-Qiu TIAN ; Wen-Yu WANG ; Ya-Lun ZHANG ; De-Hong XU
China Journal of Chinese Materia Medica 2025;50(5):1187-1194
The main active compound, 3,4-dihydroxyacetophenone(3,4-DHAP), in the leaves of Ilex pubescens var. glaber, exhibits various pharmacological activities, including vasodilation and heart protection. Currently, natural extraction and chemical synthesis are the primary methods for obtaining 3,4-DHAP, but both approaches have inherent challenges. To address these problems, this study explored the whole-cell bioconversion of 1-(4-hydroxyphenol)-ethanol to 3,4-DHAP using recombinant Escherichia coli, cultivated in a green, cost-effective medium at room temperature and atmospheric pressure. Firstly, this study successfully constructed recombinant E. coli S1, which contained only the HpaBC gene, and recombinant E. coli S3, which contained both the Hped and HpaBC genes. The ability of S1 and S3 to synthesize 3,4-DHAP from their respective substrates was then evaluated through whole-cell bioconversion. Based on these results, the effects of four factors, i.e., substrate concentration, IPTG concentration, induction temperature, and transformation temperature, on the whole-cell bioconversion yield of S3 were investigated using an orthogonal experiment. The results showed that the factors influenced the yield in the following order: transformation temperature > induction temperature > IPTG concentration > substrate concentration. The optimal conditions were found to be a transformation temperature of 35 ℃, IPTG concentration of 0.1 mmol·L~(-1), induction temperature of 25 ℃, and substrate concentration of 10 mmol·L~(-1). Finally, the effect of transformation time on the yield of 3,4-DHAP was further examined under the optimal conditions. The results indicated that as the transformation time increased, the yield of 3,4-DHAP steadily increased. The highest yield of 260 mg·L~(-1) with a productivity of 17% was achieved after 72 hours of transformation. In conclusion, this study successfully achieved the whole-cell bioconversion of 1-(4-hydroxyphenol)-ethanol to 3,4-DHAP using recombinant E. coli for the first time, laying the groundwork for further optimization and development of the biosynthesis of 3,4-DHAP.
Escherichia coli/genetics*
;
Acetophenones/chemistry*
;
Ethanol/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Biotransformation
3.Effect of Previous Differential Treatments on the Efficacy after Switching to Flumatinib in Patients with Chronic Myeloid Leukemia.
Xiao-Han WANG ; Jing-Ya SUN ; Ling-Ling YIN ; Ting-Ting QIU ; De-Peng LI
Journal of Experimental Hematology 2025;33(5):1248-1253
OBJECTIVE:
To investigate the effect of different previous treatments on the efficacy of flumatinib in patients with chronic myeloid leukemia (CML).
METHODS:
The clinical data of 69 patients with CML treated with flumatinib in the Affiliated Hospital of Xuzhou Medical University from 2019 to 2024 were retrospectively analyzed. The patients were divided into a first-line flumatinib group and a first-line non-flumatinib group according to whether flumatinib was used as first-line treatment. The molecular response (MR) at 3, 6 and 12 months of treatment was compared between the two groups to evaluate the early efficacy. The first-line non-flumatinib group was further divided into imatinib group, nilotinib group, and dasatinib group according to the previous first-line drugs used. The efficacy data of these three groups at 3, 6 and 12 months after switching to flumatinib were collected, and the MR was evaluated to compare efficacy differences.
RESULTS:
The rate of early molecular response (EMR) in the first-line flumatinib group was significantly higher than that in the first-line non-flumatinib group (P < 0.05). At 6 months and 12 months of treatment, the proportion of patients achieving MR 4.5 in the first-line flumatinib group was significantly higher than that in the first-line non-flumatinib group (P < 0.05). Compared with the imatinib and nilotinib groups, the previous dasatinib group showed a significantly higher proportion of patients achieving MR 5.0 at 3, 6, and 12 months after switching to flumatinib (P < 0.05).
CONCLUSION
Compared with the previous treatment with other tyrosine kinase inhibitors (TKIs), initial use of flumatinib at diagnosis enable patients to achieve deeper molecular remission more rapidly. Compared with previous use of imatinib or nilotinib, previous use of dasatinib is associated with deeper molecular remission after switching to flumatinib.
Humans
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy*
;
Retrospective Studies
;
Imatinib Mesylate/therapeutic use*
;
Dasatinib/therapeutic use*
;
Treatment Outcome
;
Pyrimidines/therapeutic use*
;
Female
;
Male
;
Protein Kinase Inhibitors/therapeutic use*
;
Middle Aged
;
Antineoplastic Agents/therapeutic use*
4.Efficacy and Prognostic Evaluation of Hypomethylating Therapy in Patients with Myelodysplastic/Myeloproliferative Neoplasms.
Jing-Ya SUN ; Xiao-Han WANG ; Yue-Kun QI ; Ting-Ting QIU ; De-Peng LI
Journal of Experimental Hematology 2025;33(5):1392-1397
OBJECTIVE:
To study the efficacy and prognosis of patients with myelodysplastic/myeloproliferative neoplasms (MDS/MPN) treated with hypomethylating agents (HMA), and to analyze the factors that may affect their efficacy and prognosis, in order to provide a clinical basis for the choice of treatment options for patients with MDS/MPN.
METHODS:
35 patients with newly diagnosed MDS/MPN who received hypomethylating therapy from January 2018 to April 2024 in the Department of Hematology of Affiliated Hospital of Xuzhou Medical University were included. The patients were divided into decitabine group (15 cases) and azacitidine group (20 cases) according to the treatment regimen. The efficacy, median overall survival (OS), and median progression-free survival (PFS) of the patients after HMA treatment were evaluated. The differences in efficacy and survival between the two groups were compared, and factors affecting efficacy and prognosis of MDS/MPN patients were analyzed.
RESULTS:
The overall response rate (ORR) of the 35 MDS/MPN patients treated with HMA was 51.4%. The ORR was 73.3% in decitabine group and 35.0% in azacitidine group, with a statistically significant difference (P =0.041). Survival analysis showed that the median OS was 12 months and the median PFS was 10 months in the entire cohort of the patients. There was no difference in median OS between decitabine group and azacitidine group. The median PFS in decitabine group was 12 months, higher than that in azacitidine group (7 months), but the difference was not statistically significant (P =0.505). Multivariate analysis showed that the treatment regimen and platelet count were independent influencing factors for the efficacy of HAM treatment; The course and therapeutic efficacy of HMA treatment were independent influencing factors for OS in MDS/MPN patients. The main adverse reactions of HMA treatment were myelosuppression and pulmonary infection. Gastrointestinal reactions were more likely to occur in the azacitidine group than in the decitabine group, and the difference was statistically significant (P =0.027).
CONCLUSION
HMA treatment is effective and well-tolerated in some MDS/MPN patients. Decitabine shows superior efficacy compared with azacitidine and is less likely to cause gastrointestinal reactions. Patients who received ≥4 courses of HMAs and responded to hypomethylating therapy had longer OS.
Humans
;
Prognosis
;
Decitabine/therapeutic use*
;
Azacitidine/therapeutic use*
;
Male
;
Female
;
Myelodysplastic Syndromes/drug therapy*
;
Middle Aged
;
Myelodysplastic-Myeloproliferative Diseases/drug therapy*
;
Antimetabolites, Antineoplastic/therapeutic use*
;
Treatment Outcome
;
Aged
;
Myeloproliferative Disorders/drug therapy*
;
Adult
;
DNA Methylation
5.Xuefu Zhuyu Decoction Improves Blood-Brain Barrier Integrity in Acute Traumatic Brain Injury Rats via Regulating Adenosine.
Yang WANG ; Qiu-Ju YAN ; En HU ; Yao WU ; Ruo-Qi DING ; Quan CHEN ; Meng-Han CHENG ; Xi-Ya YANG ; Tao TANG ; Teng LI
Chinese journal of integrative medicine 2025;31(7):624-634
OBJECTIVE:
To explore the neuroprotective effects of Xuefu Zhuyu Decoction (XFZYD) based on in vivo and metabolomics experiments.
METHODS:
Traumatic brain injury (TBI) was induced via a controlled cortical impact (CCI) method. Thirty rats were randomly divided into 3 groups (10 for each): sham, CCI and XFZYD groups (9 g/kg). The administration was performed by intragastric administration for 3 days. Neurological functions tests, histology staining, coagulation and haemorheology assays, and Western blot were examined. Untargeted metabolomics was employed to identify metabolites. The key metabolite was validated by enzyme-linked immunosorbent assay and immunofluorescence.
RESULTS:
XFZYD significantly alleviated neurological dysfunction in CCI model rats (P<0.01) but had no impact on coagulation function. As evidenced by Evans blue and IgG staining, XFZYD effectively prevented blood-brain barrier (BBB) disruption (P<0.05, P<0.01). Moreover, XFZYD not only increased the expression of collagen IV, occludin and zona occludens 1 but also decreased matrix metalloproteinase-9 (MMP-9) and cyclooxygenase-2 (COX-2), which protected BBB integrity (all P<0.05). Nine potential metabolites were identified, and all of them were reversed by XFZYD. Adenosine was the most significantly altered metabolite related to BBB repair. XFZYD significantly reduced the level of equilibrative nucleoside transporter 2 (ENT2) and increased adenosine (P<0.01), which may improve BBB integrity.
CONCLUSIONS
XFZYD ameliorates BBB disruption after TBI by decreasing the levels of MMP-9 and COX-2. Through further exploration via metabolomics, we found that XFZYD may exert a protective effect on BBB by regulating adenosine metabolism via ENT2.
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Blood-Brain Barrier/metabolism*
;
Brain Injuries, Traumatic/metabolism*
;
Adenosine/metabolism*
;
Male
;
Rats, Sprague-Dawley
;
Rats
6.A novel anti-ischemic stroke candidate drug AAPB with dual effects of neuroprotection and cerebral blood flow improvement.
Jianbing WU ; Duorui JI ; Weijie JIAO ; Jian JIA ; Jiayi ZHU ; Taijun HANG ; Xijing CHEN ; Yang DING ; Yuwen XU ; Xinglong CHANG ; Liang LI ; Qiu LIU ; Yumei CAO ; Yan ZHONG ; Xia SUN ; Qingming GUO ; Tuanjie WANG ; Zhenzhong WANG ; Ya LING ; Wei XIAO ; Zhangjian HUANG ; Yihua ZHANG
Acta Pharmaceutica Sinica B 2025;15(2):1070-1083
Ischemic stroke (IS) is a globally life-threatening disease. Presently, few therapeutic medicines are available for treating IS, and rt-PA is the only drug approved by the US Food and Drug Administration (FDA) in the US. In fact, many agents showing excellent neuroprotection but no blood flow-improving activity in animals have not achieved ideal clinical efficacy, while thrombolytic drugs only improving blood flow without neuroprotection have limited their wider application. To address these challenges and meet the huge unmet clinical need, we have designed and identified a novel compound AAPB with dual effects of neuroprotection and cerebral blood flow improvement. AAPB significantly reduced cerebral infarction and neural function deficit in tMCAO rats, pMCAO rats, and IS rhesus monkeys, as well as displayed exceptional safety profiles and excellent pharmacokinetic properties in rats and dogs. AAPB has now entered phase I of clinical trials fighting IS in China.
7.Self-degradable "gemini-like" ionizable lipid-mediated delivery of siRNA for subcellular-specific gene therapy of hepatic diseases.
Qiu WANG ; Bin WAN ; Yao FENG ; Zimeng YANG ; Dan LI ; Fan LIU ; Ya GAO ; Chang LI ; Yanhua LIU ; Yongbing SUN ; Zhonggui HE ; Cong LUO ; Jin SUN ; Qikun JIANG
Acta Pharmaceutica Sinica B 2025;15(6):2867-2883
Tailored lipid nanoparticles (LNPs)-mediated small interfering RNA (siRNA) nanomedicines show promise in treating liver disease, such as acute liver injury (ALI) and non-alcoholic steatohepatitis (NASH). However, constructing LNPs that address biosafety concerns, ensure efficient delivery, and target specific hepatic subcellular fractions has been challenging. To evade above obstacles, we develop three novel self-degradable "gemini-like" ionizable lipids (SS-MA, SS-DC, SS-MH) by incorporating disulfide bonds and modifying the length of ester bond and tertiary amino head. Our findings reveal that the disulfide-bond-bridged LNPs exhibit reduction-responsive drug release, improving both biosafety and siRNA delivery efficiency. Furthermore, the distance of ester bond and tertiary amino head significantly influences the LNPs' pK a, thereby affecting endosomal escape, hemolytic efficiency, absorption capacity of ApoE, uptake efficiency of hepatocytes and liver accumulation. We also develop the modified-mannose LNPs (M-LNP) to target liver macrophages specifically. The optimized M-MH_LNP@TNFα exhibits potential in preventing ALI by decreasing tumor necrosis factor α (TNFα) levels in the macrophages, while MH_LNP@DGAT2 could treat NASH by selectively degrading diacylglycerol O-acyltransferase 2 (DGAT2) in the hepatocytes. Our findings provide new insights into developing novel highly effective and low-toxic "gemini-like" ionizable lipids for constructing LNPs, potentially achieving more effective treatment for hepatic diseases.
8.Risk factors for bronchopulmonary dysplasia in twin preterm infants:a multicenter study
Yu-Wei FAN ; Yi-Jia ZHANG ; He-Mei WEN ; Hong YAN ; Wei SHEN ; Yue-Qin DING ; Yun-Feng LONG ; Zhi-Gang ZHANG ; Gui-Fang LI ; Hong JIANG ; Hong-Ping RAO ; Jian-Wu QIU ; Xian WEI ; Ya-Yu ZHANG ; Ji-Bin ZENG ; Chang-Liang ZHAO ; Wei-Peng XU ; Fan WANG ; Li YUAN ; Xiu-Fang YANG ; Wei LI ; Ni-Yang LIN ; Qian CHEN ; Chang-Shun XIA ; Xin-Qi ZHONG ; Qi-Liang CUI
Chinese Journal of Contemporary Pediatrics 2024;26(6):611-618
Objective To investigate the risk factors for bronchopulmonary dysplasia(BPD)in twin preterm infants with a gestational age of<34 weeks,and to provide a basis for early identification of BPD in twin preterm infants in clinical practice.Methods A retrospective analysis was performed for the twin preterm infants with a gestational age of<34 weeks who were admitted to 22 hospitals nationwide from January 2018 to December 2020.According to their conditions,they were divided into group A(both twins had BPD),group B(only one twin had BPD),and group C(neither twin had BPD).The risk factors for BPD in twin preterm infants were analyzed.Further analysis was conducted on group B to investigate the postnatal risk factors for BPD within twins.Results A total of 904 pairs of twins with a gestational age of<34 weeks were included in this study.The multivariate logistic regression analysis showed that compared with group C,birth weight discordance of>25%between the twins was an independent risk factor for BPD in one of the twins(OR=3.370,95%CI:1.500-7.568,P<0.05),and high gestational age at birth was a protective factor against BPD(P<0.05).The conditional logistic regression analysis of group B showed that small-for-gestational-age(SGA)birth was an independent risk factor for BPD in individual twins(OR=5.017,95%CI:1.040-24.190,P<0.05).Conclusions The development of BPD in twin preterm infants is associated with gestational age,birth weight discordance between the twins,and SGA birth.
9.Network pharmacology and molecular docking reveal the mechanism of resveratrol in oral squamous cell carcinoma treatment
CHEN Hongjun ; LEI Qi ; WANG Zhilin ; ZHONG Xiaowu ; QIU Ya ; LI Lihua
Journal of Prevention and Treatment for Stomatological Diseases 2024;32(3):178-187
Objective:
To explore the molecular mechanism of resveratrol (RES) in the treatment of oral squamous cell carcinoma (OSCC) through the use of biological information methods such as network pharmacology and molecular docking and to provide a theoretical reference for the clinical application of RES in the treatment of OSCC.
Methods:
The Swiss Target Prediction(http://www.swisstargetprediction.ch), SEA (http://sea.bkslab.org)database, and Pharm mapper database(http://lilab-ecust.cn) were used to retrieve RES-related targets, and the DISGENET (www.disgenet.org), OMIM (https://omim.org) and GeneCards (https://www.genecards.org) databases were used to screen OSCC disease targets. The intersection of drugs and disease targets was determined, and Cytoscape 3.7.2 software was used to construct a "drug-diseasetarget pathway" network. The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database was used to construct a target protein interaction network, and the DAVID database was used for enrichment analysis of key proteins. Finally, molecular docking validation of key proteins was performed using AutoDock and PyMOL. The enrichment analysis and molecular docking results were integrated to predict the possible molecular mechanisms of RES treatment in OSCC; western blot was used to determine the effect of resveratrol at different concentrations (50, 100) μmol/L on the expression of Src tyrosine kinase (SRC), epidermal growth factor receptor (EGFR), estrogen receptor gene 1 (ESR1), and phosphatidylinositol 3 kinase/protein kinase B (PI3K/AKT) signaling pathway proteins in OSCC HSC-3 cells.
Results:
A total of 243 targets of RES drugs and 6 094 targets of OSCC were identified. A total of 116 potential common targets were obtained by intersecting drugs with disease targets. These potential targets mainly participate in biological processes such as in vivo protein self-phosphorylation, peptide tyrosine phosphorylation, transmembrane receptor protein tyrosine kinase signaling pathway, and positive regulation of RNA polymerase Ⅱ promoter transcription, and they interfere with the PI3K/AKT signaling pathway to exert anti-OSCC effects. The docking results of resveratrol with OSCC molecules indicated that key targets, such as EGFR, ESR1, and SRC, have good binding activity. The results of cell-based experiments showed that resveratrol inhibited the protein expression of SRC, EGFR, ESR1, p-PI3K, and p-AKT in HSC-3 cells in a dose-dependent manner.
Conclusion
RES can inhibit the expression of its targets EGFR, ESR1, SRC, p-PI3K, and p-AKT in OSCC cells.
10.Network pharmacology and molecular docking reveal the mechanism of resveratrol in oral squamous cell car-cinoma treatment
Hongjun CHEN ; Qi LEI ; Zhilin WANG ; Xiaowu ZHONG ; Ya QIU ; Lihua LI
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):178-187
Objective To explore the molecular mechanism of resveratrol(RES)in the treatment of oral squamous cell carcinoma(OSCC)through the use of biological information methods such as network pharmacology and molecular docking and to provide a theoretical reference for the clinical application of RES in the treatment of OSCC.Methods The Swiss Target Prediction(http://www.swisstargetprediction.ch),SEA(http://sea.bkslab.org)database,and Pharm map-per database(http://lilab-ecust.cn)were used to retrieve RES-related targets,and the DISGENET(www.disgenet.org),OMIM(https://omim.org)and GeneCards(https://www.genecards.org)databases were used to screen OSCC disease tar-gets.The intersection of drugs and disease targets was determined,and Cytoscape 3.7.2 software was used to construct a"drug-diseasetarget pathway"network.The Search Tool for the Retrieval of Interacting Genes/Proteins(STRING)data-base was used to construct a target protein interaction network,and the DAVID database was used for enrichment analy-sis of key proteins.Finally,molecular docking validation of key proteins was performed using AutoDock and PyMOL.The enrichment analysis and molecular docking results were integrated to predict the possible molecular mechanisms of RES treatment in OSCC;western blot was used to determine the effect of resveratrol at different concentrations(50,100)μmol/L on the expression of Src tyrosine kinase(SRC),epidermal growth factor receptor(EGFR),estrogen re-ceptor gene 1(ESR1),and phosphatidylinositol 3 kinase/protein kinase B(PI3K/AKT)signaling pathway proteins in OSCC HSC-3 cells.Results A total of 243 targets of RES drugs and 6 094 targets of OSCC were identified.A total of 116 potential common targets were obtained by intersecting drugs with disease targets.These potential targets mainly participate in biological processes such as in vivo protein self-phosphorylation,peptide tyrosine phosphorylation,trans-membrane receptor protein tyrosine kinase signaling pathway,and positive regulation of RNA polymerase Ⅱ promot-er transcription,and they interfere with the PI3K/AKT signaling pathway to exert anti-OSCC effects.The docking results of resveratrol with OSCC molecules indicated that key targets,such as EGFR,ESR1,and SRC,have good binding activi-ty.The results of cell-based experiments showed that resveratrol inhibited the protein expression of SRC,EGFR,ESR1,p-PI3K,and p-AKT in HSC-3 cells in a dose-dependent manner.Conclusion RES can inhibit the expres-sion of its targets EGFR,ESR1,SRC,p-PI3K,and p-AKT in OSCC cells.


Result Analysis
Print
Save
E-mail