1.Effects and mechanism of total alkaloids of Corydalis Rhizoma on the regulation of cuproptosis in rats with diabetic cardiomyopathy
Jun LI ; Yazhi QI ; Ya TANG ; Rui CAO ; Qiang XU ; Yusheng HAN
China Pharmacy 2025;36(7):801-806
OBJECTIVE To investigate the effects and mechanism of total alkaloids of Corydalis Rhizoma (TAC) on the regulation of cuproptosis in rats with diabetic cardiomyopathy (DCM) based on silence information regulator 1(Sirt1)/tumor protein 53(P53)signaling pathway. METHODS DCM rat model was induced by high-fat and high-sugar diet and intraperitoneal injection of streptozotocin. Thirty-two model rats were randomly divided into model group, TAC low-dose, medium-dose and high-dose groups (7, 10.5, 14 mg/kg), with 8 rats in each group. An additional 8 rats were assigned to normal control group. Related drugs or normal saline were administered intragastrically in each group, once a day, for 4 weeks. After the last medication, the fasting blood glucose (FBG) levels of the rats were measured. The levels of myocardial creatine kinase (CK), creatine kinase isoenzyme (CK-MB), and lactate dehydrogenase (LDH) in serum and myocardial tissue of rats were all detected. The pathological morphology, fibrosis degree, and Cu2+ deposition of myocardial tissue in rats were observed. The levels of Cu2+ and glutathione (GSH) in myocardial tissue, the expressions of Sirt1/P53 signaling pathway-related proteins [Sirt1, P53, solute carrier family 7 membrane 11 (SLC7A11)], and iron-sulfur cluster-related proteins [ferredoxin 1 (FDX1), lipoic acid synthetase (LIAS), aconitase 2 (ACO2), NADH-ubiquinone oxidoreductase core subunit S8 (NDUFS8), dihydrolipoamide acetyltransferase (DLAT), dihydrolipoamide succinyltransferase (DLST)], and heat shock protein 70 (HSP70) were all determined. RESULTS Compared with normal control group, the model group exhibited significantly elevated levels of FBG, CK, CK-MB and LDH in both serum and myocardial tissue, as well as increased 2+ levels of Cu in myocardial tissue and the expression of P53 and HSP70 proteins (P<0.05); the level of GSH and the expression levels of Sirt1, SLC7A11, FDX1, LIAS, ACO2, NDUFS8, DLAT, and DLST proteins in myocardial tissue were all significantly decreased (P<0.05); the myocardial tissue exhibited severe pathological damage, with numerous inflammatory cell infiltrations and significant fibrosis, as well as increased deposition of Cu2+. Compared with model group, most of the above quantitative indicators in rats were significantly reversed in TAC groups (P<0.05); the pathological damage to the myocardial tissue was alleviated, with reduced fibrosis and Cu2+ deposition. CONCLUSIONS TAC can ameliorate DCM in rats, and its mechanism of action may be related to activating the activity of the Sirt1/P53 signaling pathway, promoting the chelation of GSH with Cu2+, and inhibiting cuproptosis of cardiomyocyte.
2.Mechanisms of Gut Microbiota Influencing Reproductive Function via The Gut-Gonadal Axis
Ya-Qi ZHAO ; Li-Li QI ; Jin-Bo WANG ; Xu-Qi HU ; Meng-Ting WANG ; Hai-Guang MAO ; Qiu-Zhen SUN
Progress in Biochemistry and Biophysics 2025;52(5):1152-1164
Reproductive system diseases are among the primary contributors to the decline in social fertility rates and the intensification of aging, posing significant threats to both physical and mental health, as well as quality of life. Recent research has revealed the substantial potential of the gut microbiota in improving reproductive system diseases. Under healthy conditions, the gut microbiota maintains a dynamic balance, whereas dysfunction can trigger immune-inflammatory responses, metabolic disorders, and other issues, subsequently leading to reproductive system diseases through the gut-gonadal axis. Reproductive diseases, in turn, can exacerbate gut microbiota imbalance. This article reviews the impact of the gut microbiota and its metabolites on both male and female reproductive systems, analyzing changes in typical gut microorganisms and their metabolites related to reproductive function. The composition, diversity, and metabolites of gut bacteria, such as Bacteroides, Prevotella, and Firmicutes, including short-chain fatty acids, 5-hydroxytryptamine, γ-aminobutyric acid, and bile acids, are closely linked to reproductive function. As reproductive diseases develop, intestinal immune function typically undergoes changes, and the expression levels of immune-related factors, such as Toll-like receptors and inflammatory cytokines (including IL-6, TNF-α, and TGF-β), also vary. The gut microbiota and its metabolites influence reproductive hormones such as estrogen, luteinizing hormone, and testosterone, thereby affecting folliculogenesis and spermatogenesis. Additionally, the metabolism and absorption of vitamins can also impact spermatogenesis through the gut-testis axis. As the relationship between the gut microbiota and reproductive diseases becomes clearer, targeted regulation of the gut microbiota can be employed to address reproductive system issues in both humans and animals. This article discusses the regulation of the gut microbiota and intestinal immune function through microecological preparations, fecal microbiota transplantation, and drug therapy to treat reproductive diseases. Microbial preparations and drug therapy can help maintain the intestinal barrier and reduce chronic inflammation. Fecal microbiota transplantation involves transferring feces from healthy individuals into the recipient’s intestine, enhancing mucosal integrity and increasing microbial diversity. This article also delves into the underlying mechanisms by which the gut microbiota influences reproductive capacity through the gut-gonadal axis and explores the latest research in diagnosing and treating reproductive diseases using gut microbiota. The goal is to restore reproductive capacity by targeting the regulation of the gut microbiota. While the gut microbiota holds promise as a therapeutic target for reproductive diseases, several challenges remain. First, research on the association between gut microbiota and reproductive diseases is insufficient to establish a clear causal relationship, which is essential for proposing effective therapeutic methods targeting the gut microbiota. Second, although gut microbiota metabolites can influence lipid, glucose, and hormone synthesis and metabolism via various signaling pathways—thereby indirectly affecting ovarian and testicular function—more in-depth research is required to understand the direct effects of these metabolites on germ cells or granulosa cells. Lastly, the specific efficacy of gut microbiota in treating reproductive diseases is influenced by multiple factors, necessitating further mechanistic research and clinical studies to validate and optimize treatment regimens.
3.The Role and Mechanism of Circadian Rhythm Regulation in Skin Tissue Regeneration
Ya-Qi ZHAO ; Lin-Lin ZHANG ; Xiao-Meng MA ; Zhen-Kai JIN ; Kun LI ; Min WANG
Progress in Biochemistry and Biophysics 2025;52(5):1165-1178
Circadian rhythm is an endogenous biological clock mechanism that enables organisms to adapt to the earth’s alternation of day and night. It plays a fundamental role in regulating physiological functions and behavioral patterns, such as sleep, feeding, hormone levels and body temperature. By aligning these processes with environmental changes, circadian rhythm plays a pivotal role in maintaining homeostasis and promoting optimal health. However, modern lifestyles, characterized by irregular work schedules and pervasive exposure to artificial light, have disrupted these rhythms for many individuals. Such disruptions have been linked to a variety of health problems, including sleep disorders, metabolic syndromes, cardiovascular diseases, and immune dysfunction, underscoring the critical role of circadian rhythm in human health. Among the numerous systems influenced by circadian rhythm, the skin—a multifunctional organ and the largest by surface area—is particularly noteworthy. As the body’s first line of defense against environmental insults such as UV radiation, pollutants, and pathogens, the skin is highly affected by changes in circadian rhythm. Circadian rhythm regulates multiple skin-related processes, including cyclic changes in cell proliferation, differentiation, and apoptosis, as well as DNA repair mechanisms and antioxidant defenses. For instance, studies have shown that keratinocyte proliferation peaks during the night, coinciding with reduced environmental stress, while DNA repair mechanisms are most active during the day to counteract UV-induced damage. This temporal coordination highlights the critical role of circadian rhythms in preserving skin integrity and function. Beyond maintaining homeostasis, circadian rhythm is also pivotal in the skin’s repair and regeneration processes following injury. Skin regeneration is a complex, multi-stage process involving hemostasis, inflammation, proliferation, and remodeling, all of which are influenced by circadian regulation. Key cellular activities, such as fibroblast migration, keratinocyte activation, and extracellular matrix remodeling, are modulated by the circadian clock, ensuring that repair processes occur with optimal efficiency. Additionally, circadian rhythm regulates the secretion of cytokines and growth factors, which are critical for coordinating cellular communication and orchestrating tissue regeneration. Disruptions to these rhythms can impair the repair process, leading to delayed wound healing, increased scarring, or chronic inflammatory conditions. The aim of this review is to synthesize recent information on the interactions between circadian rhythms and skin physiology, with a particular focus on skin tissue repair and regeneration. Molecular mechanisms of circadian regulation in skin cells, including the role of core clock genes such as Clock, Bmal1, Per and Cry. These genes control the expression of downstream effectors involved in cell cycle regulation, DNA repair, oxidative stress response and inflammatory pathways. By understanding how these mechanisms operate in healthy and diseased states, we can discover new insights into the temporal dynamics of skin regeneration. In addition, by exploring the therapeutic potential of circadian biology in enhancing skin repair and regeneration, strategies such as topical medications that can be applied in a time-limited manner, phototherapy that is synchronized with circadian rhythms, and pharmacological modulation of clock genes are expected to optimize clinical outcomes. Interventions based on the skin’s natural rhythms can provide a personalized and efficient approach to promote skin regeneration and recovery. This review not only introduces the important role of circadian rhythms in skin biology, but also provides a new idea for future innovative therapies and regenerative medicine based on circadian rhythms.
4.Effect of knockdown of ARHGAP30 on proliferation and apoptosis of Siha cells
Ya-Ting PENG ; Duan LIU ; Jie MENG ; Wen-Chao LI ; Hui-Qi LI ; Hua GUO ; Mei-Lan NIU ; Qiao-Hong QIN
Chinese Pharmacological Bulletin 2024;40(5):847-853
Aim To investigate the changes in the proliferation and apoptosis of Siha cells after knocking down Rho GTPase-activating protein 30(ARHGAP30).Methods After designing specific shARHGAP30 primers and connecting them to the pLKO.1 vector,we transformed them into Escherichia coli competent cells,then co-transfecting them with lentiviral helper plasmids into HEK-293T cells.We collected and filtered cell supernatant to obtain the vi-rus to infect Siha cells.RT-qPCR and Western blot were used to detect knockdown efficiency,as well as changes in the expression of Bax and Bcl-2 after trans-fection.The CCK-8 method was employed to measure the proliferation level of cells after knockdown.Results After successful construction of a lentiviral plasmid with knockdown of the ARHGAP30 gene and establish-ment of stably transfected Siha cells,ARHGAP30 tran-scription and translation(P<0.01)in Siha cells de-creased,Bax/Bcl-2 significantly decreased(P<0.01),indicating decreased apoptosis and increased cell proliferation(P<0.01).Conclusions This study suggests the involvement of ARHGAP30 in the proliferation and apoptosis of Siha cells,and regulating the ARHGAP30 gene may interfere with the occurrence and development of cervical cancer.
5.Study on pathogenesis of PMDD liver-qi reversal syndrome mediated by GABAARsubunit in amygdala and hippocampus of rats based on tetrahydroprogesterone
Yu-Chen QI ; Dong-Mei GAO ; Ya SUN ; Tian-Tian GAO ; Qi SHEN ; Wei-Lin CUI ; Feng-Qin WEI ; Xiao-Li SONG ; Jie-Qiong WANG
Chinese Pharmacological Bulletin 2024;40(11):2131-2140
Aim To observe the behavioral effects of exogenous allopregnanolone(ALLO)and its inhibitor finasteride on the receptive period(R)and non-recep-tive period(NR)of PMDD liver-qi inversion model rats and the expression of GABAARα4,GABAARδ mR-NA and protein effects to explore its pathogenesis.Methods The PMDD liver-qi reverse syndrome rat model was prepared.The rats were divided into the normal group R and NR(control-R,control-NR),model group R and NR(Model-R,Model-NR),nor-mal group R+ALLO and NR+ALLO(Control+A-R,Control+A-NR),and model group R+ALLO and NR+ALLO(Model+A-R,Model+A-NR),model group R+finasteride and NR+finasteride(Model+F-R,Model+F-NR).The elevated cross labyrinth ex-periment and social interaction experiment were used to detect the behaviors of rats;fluorescence quantitative PCR and immunofluorescence were used to detect the expression of GABAARα4 and 8 mRNA and protein in rat amygdala and hippocampus.Results In the be-havioral evaluation,in the NR period,in the elevated cross maze test and in the social interaction test,the rats in the model group had anxiety behavior and de-creased social communication ability(P<0.05),while the rats in the Model+A group could effectively relieve anxiety symptoms and improve their social com-munication ability(P<0.05),and the rats in the Model+F group had increased anxiety behavior and social disorder(P<0.05).In fluorescence quantita-tive PCR and immunofluorescence experiments,the ex-pression of GABAARα4 subunit in the model group was up-regulated in the hippocampus(P<0.01),and the expression of δ subunit was down-regulated(P<0.01);the expression of GABAARα4 subunit in the a-mygdala and hippocampus of the Model+A group de-creased(P<0.01),and the expression of δ subunit increased in the hippocampus(P<0.01).Conclu-sions The abnormal expression of GABAARα4 and 8 subunits mediated by ALLO improves the anxiety symptoms and social interaction ability of PMDD,which is the pathogenesis of PMDD liver-qi reverse syndrome,and provides basis and support for subse-quent exploration of the pathogenesis of PMDD liver-qi reverse syndrome.
6.Study on inhibitory effect of alisol B on non-small cell lung cancer based on network pharmacology and its mechanism
Liu-Yan XIANG ; Wen-Xuan WANG ; Si-Meng GU ; Xiao-Qian ZHANG ; Lu-Yao LI ; Yu-Qian LI ; Yuan-Ru WANG ; Qi-Qi LEI ; Xue YANG ; Ya-Jun CAO ; Xue-Jun LI
Chinese Pharmacological Bulletin 2024;40(12):2375-2384
Aim To explore the potential genes and mechanism of alisol B in the treatment of non-small cell lung cancer(NSCLC).Methods The proliferation and migration of NSCLC cells were detected by CCK-8 and Transwell.Genes of NSCLC and alisol B were col-lected through TCGA and compound gene prediction database,and their intersection genes were obtained.The network of protein-protein interaction(PPI)was constructed by using String database,and the top 20 key nodes were screened out,and the prognosis-related proteins related to the prognosis of NSCLC were screened out by using R language,and the intersection of them was obtained.The potential mechanism of ali-sol B on NSCLC was explored by KEGG and GO en-richment analysis and the relationship between related genes and immune cells,which was verified by cell-lev-el experiments.Results Alisol B inhibited the cell activity and migration ability of NSCLC cells.Five im-portant genes were identified by network pharmacologi-cal analysis:CCNE1,CDK1,COL1A1,COL1A2 and COL3A1.The results of cell experiment showed that al-isol B down-regulated the expression of Cyclin E1,CDK1 and COL1A2 in NSCLC cells.In addition,alisol B could inhibit the expression of COL1A2 and M2 macrophage marker CD206 in macrophages.Conclu-sions Alisol B may inhibit the proliferation of tumor cells by down-regulating CDK1 and Cyclin E1,and may affect the function of macrophages by inhibiting COL1A2,thus regulating the tumor immune microenvi-ronment and inhibiting NSCLC.
7.Bone Metabolism of Multiple Myeloma Bone Disease Patients with Different Blood Separation Results
Ze-Wen FAN ; Na-Li CHU ; Shi YAN ; Jian-Qi QIAO ; Qiao-Ya YU ; Jing-Yu ZHANG
Journal of Experimental Hematology 2024;32(3):799-804
Objective:To investigate the clinical significance of bone metabolic indexes for disease assessment and curative effect monitoring in multiple myeloma(MM)bone disease(MBD)patients with different blood separation results.Methods:A total of 134 newly diagnosed MM patients treated in Cangzhou Hospital of Integrated TCM-WM-Hebei were enrolled and divided into control group[119 cases,serum,colloid and red blood cell(RBC)from top to bottom of sample]and abnormal group(15 cases,serum,mixed layer of RBC and serum,colloid and RBC from top to bottom of sample)according to the results of blood separation.According to the imaging findings,MBD was classified into grade 0-4,grade 0-2 was mild,and grade 3-4 was severe.The MBD grade of patients in the two groups was analyzed.The curative effect of MBD patients after chemotherapy and the changes of blood separation results and bone metabolic indexes before and after treatment were evaluated.The correlation between β 2-microglobulin(MG)and bone metabolic indexes was analyzed by Pearson correlation analysis.Results:In the control group,there were 69 cases of grade 0-2 and 50 cases of grade 3-4,while in the abnormal group,there were 5 cases of grade 0-2 and 10 cases of grade 3-4,the difference was statistically significant(P<0.05).The serum β 2-MG,β-CTX levels in abnormal group were both significantly higher than those in control group,while the levels of P1NP and osteocalcin(OC)were significantly lower(all P<0.001).In the control group,there were 95 patients with ≥ partial response(PR)and the blood separation results were not changed,while 24 patients with<PR and 5 of them had abnormal blood separation results.In the abnormal group,9 patients with efficacy≥PR showed normal blood separation results,while 6 patients with efficacy<PR and 5 of them still remained abnormal blood separation results.Compared with before treatment,β-CTX and β 2-MG of patients with efficacy ≥ PR were significantly decreased but P1NP and OC increased in the control group(all P<0.00 1),which was the same as abnoraml group(both P<0.001,P<0.01).There were no significant changes in the levels of all indexes in the two groups of patients with efficacy<PR(P>0.05).Compared with before treatment,the levels of β-CTX and β 2-MG in the control group with unchanged blood separation results were significantly decreased(both P<0.00l),while the levels of P1NP and OC were significantly increased(P<0.01,P<0.001),and the level of each index in the patients transformed to abnormal blood separation result after treatment did not significantly change(P>0.05);the levels of β-CTX and β 2-MG in the abnormal group transformed to normal blood separation result were significantly decreased(both P<0.01),while the levels of P1NP and OC were significantly increased(P<0.001,P<0.01),and the level of each index in patients with unchanged blood separation results did not significantly change(P>0.05).Pearson correlation analysis showed that serumβ 2-MG was positively correlated with β-CTX(r=0.709,P<0.001),and negatively correlated with P1NP and OC(r=-0.410,r=-0.412,both P<0.001).Conclusion:MBD patients with abnormal blood separation results have higher bone disease grade and poor prognosis,which is closely related to the significant increase of bone resorption index β-CTX level and decrease of bone formation index P1NP and OC levels,leading to more serious bone metabolic homeostasis disorder.The results of blood separation combined with the changes of bone metabolic indexes can be used as one of the comprehensive predictors of disease condition,efficacy monitoring and prognosis evaluation of MBD patients.
8.Research on the impact of supply side policy coordination of medical insurance on cost control under DIP payment method
Kun-He LIN ; Ye-Sheng SHANGGUAN ; Ya-Qi RAO ; Jing PENG ; Yi CHEN ; Yi-Fan YAO ; Ying-Bei XIONG ; Li XIANG
Chinese Journal of Health Policy 2024;17(5):17-24
Objective:This study aims to explore the synergistic effects of DIP and other medical insurance supply-side policies.Method:City A that has piloted DIP reform was set as the treatment group,and City B without reform was set as the control group.A total of 1 120 public medical institution samples from 2019 to 2022 were collected.The total medical expenses during hospitalization and some structural expenses were analyzed using DID method.Result:DIP had a significant inhibitory effect on the medical expenses,and the expenses of checkups and examinations during hospitalization in city A,but had no impact on the drug and the material expenses during hospitalization.Conclusion:DIP played a significant cost control role and effectively controlled the total medical expenses during hospitalization.The synergistic effects of price adjustment of medical services policy and national centralized drug/material procurement policy on cost control were insufficient.DIP synergized with other supply-side policies to promote rational medical cost structure.It is suggested that medical insurance departments should focus on the synergistic effects of medical insurance supply-side policies to jointly improve the efficiency of medical insurance fund utilization.
9.Value of contrast-enhanced ultrasonography in microwave ablation treatment of symptomatic focal uterine adenomyosis
Xiao-Long LI ; Jia-Xin LI ; Song-Yuan YU ; Pei-Li FAN ; Yun-Jie JIN ; Er-Jiao XU ; Sai-Nan GUAN ; Er-Ya DENG ; Qiu-Yan LI ; Zheng-Biao JI ; Jiu-Ling QI ; Hui-Xiong XU ;
Ultrasonography 2024;43(1):68-77
Purpose:
This study evaluated the value of contrast-enhanced ultrasonography (CEUS) in the ultrasound-guided microwave ablation (MWA) treatment of symptomatic focal uterine adenomyosis.
Methods:
This retrospective study was conducted between March 2020 and January 2023, enrolling 52 patients with symptomatic focal uterine adenomyosis who had undergone MWA. All patients were examined with CEUS before and after MWA. The non-perfused volume (NPV) was compared between CEUS and dynamic contrast-enhanced magnetic resonance imaging (DCEMRI) following ablation. Therapeutic efficacy and safety were evaluated at 3-, 6-, and 12-month follow-ups. Additionally, this study explored the correlations between pre-treatment CEUS features and a volume reduction ratio indicating sufficient ablation, defined as 50% or more at the 3-month follow-up.
Results:
No significant differences in NPV were noted between CEUS and DCE-MRI immediately after MWA and during follow-up (all P>0.05). At the 3-month follow-up, the median VRRs for the uterus and adenomyosis were 33.2% and 63.9%, respectively. Sufficient ablation was achieved in 69.2% (36/52) of adenomyosis cases, while partial ablation was observed in the remaining 30.8% (16/52). The identification of non-enhancing areas on pre-treatment CEUS was associated with sufficient ablation (P=0.016). At the 12-month follow-up, significant decreases were observed in both the uterine and adenomyosis volumes (all P<0.001). Dysmenorrhea and menorrhagia were significantly alleviated at 12 months, and no major complications were encountered.
Conclusion
CEUS can be used to evaluate the ablation zone of focal adenomyosis that has been treated with MWA, similarly to DCE-MRI. The identification of non-enhancing areas on pretreatment CEUS indicates satisfactory treatment outcomes.
10.Correlation of environment temperature with the incidence of testicular torsion
Qing-Song MENG ; Jia-Xing DU ; Ming ZHANG ; Jiang-Hua JIA ; Xin WANG ; Peng ZHANG ; Wan-Li MA ; Ya-Xuan WANG ; Dong-Bin WANG ; Jin-Chun QI
National Journal of Andrology 2024;30(2):128-131
Objective:To explore the influence of environment temperature on the incidence of testicular torsion.Methods:We collected the clinical data on 172 cases of testicular torsion diagnosed in the Second Hospital of Hebei Medical University from De-cember 2013 to December 2020.According to the local environment temperature on the day of onset,we divided the patients into groups A(below 0℃),B(0-10℃),C(10-20℃)and D(above 20℃),and compared the incidence rates of testicular torsion among the four groups,followed by correlation analysis.Results:The incidence rate of testicular torsion was 12.8%(n=22)in group A,35.5%(n=61)in B,34.9%(n=60)in C and 16.9%(n=29)in D,the highest at 0-10℃ in group B,with sta-tistically significant difference among the four groups(x2=29.07,P<0.001).Spearman correlation analysis indicated that the inci-dence of testicular torsion was negatively correlated with the environment temperature(r=-0.261,P<0.01),with no statistically significant difference among different seasons(x2=5.349,P>0.05),but higher in autumn and winter than in the other two sea-sons.Conclusion:The incidence of testicular torsion is negatively correlated with the environment temperature,elevated when the temperature decreases,but has no statistically significant difference among different seasons,though relatively higher in autumn and winter.

Result Analysis
Print
Save
E-mail