1.Synaptic Vesicle Glycoprotein 2A Slows down Amyloidogenic Processing of Amyloid Precursor Protein via Regulating Its Intracellular Trafficking.
Qian ZHANG ; Xiao Ling WANG ; Yu Li HOU ; Jing Jing ZHANG ; Cong Cong LIU ; Xiao Min ZHANG ; Ya Qi WANG ; Yu Jian FAN ; Jun Ting LIU ; Jing LIU ; Qiao SONG ; Pei Chang WANG
Biomedical and Environmental Sciences 2025;38(5):607-624
OBJECTIVE:
To reveal the effects and potential mechanisms by which synaptic vesicle glycoprotein 2A (SV2A) influences the distribution of amyloid precursor protein (APP) in the trans-Golgi network (TGN), endolysosomal system, and cell membranes and to reveal the effects of SV2A on APP amyloid degradation.
METHODS:
Colocalization analysis of APP with specific tagged proteins in the TGN, ensolysosomal system, and cell membrane was performed to explore the effects of SV2A on the intracellular transport of APP. APP, β-site amyloid precursor protein cleaving enzyme 1 (BACE1) expressions, and APP cleavage products levels were investigated to observe the effects of SV2A on APP amyloidogenic processing.
RESULTS:
APP localization was reduced in the TGN, early endosomes, late endosomes, and lysosomes, whereas it was increased in the recycling endosomes and cell membrane of SV2A-overexpressed neurons. Moreover, Arl5b (ADP-ribosylation factor 5b), a protein responsible for transporting APP from the TGN to early endosomes, was upregulated by SV2A. SV2A overexpression also decreased APP transport from the cell membrane to early endosomes by downregulating APP endocytosis. In addition, products of APP amyloid degradation, including sAPPβ, Aβ 1-42, and Aβ 1-40, were decreased in SV2A-overexpressed cells.
CONCLUSION
These results demonstrated that SV2A promotes APP transport from the TGN to early endosomes by upregulating Arl5b and promoting APP transport from early endosomes to recycling endosomes-cell membrane pathway, which slows APP amyloid degradation.
Amyloid beta-Protein Precursor/genetics*
;
Membrane Glycoproteins/genetics*
;
Animals
;
Protein Transport
;
Nerve Tissue Proteins/genetics*
;
Humans
;
Mice
;
Endosomes/metabolism*
;
trans-Golgi Network/metabolism*
2.Exploring effects and mechanisms of Agrimoniae Herba-Coptidis Rhizoma containing serum on colorectal cancer cells via LAMP2A-mediated autophagy.
Ya-Ping HE ; Min-Yan HOU ; Xin-Ling SHEN ; Zhi-Yu LI ; Min XU ; Xuan CHEN ; Shu-Juan ZHANG ; Han XIONG ; Hai-Yan PENG
China Journal of Chinese Materia Medica 2024;49(21):5730-5742
This study investigated the effects of Agrimoniae Herba-Coptidis Rhizoma(XHC-HL)-medicated serum on the proliferation, migration, invasion, and apoptosis of human colorectal cancer HT29 and HCT116 cells via the autophagy mediated by lysosome-associated membrane protein type 2A(LAMP2A). Bioinformatics analysis was conducted to explore the role of LAMP2A in the development and progression of colorectal cancer. Western blot(WB) was used to detect the expression of LAMP2A protein in colorectal cancer cell lines. Lentiviral transfection was utilized to construct LAMP2A knockdown in HT29 and overexpression in HCT116 colorectal cancer cell models. Real-time fluorescence quantitative polymerase chain reaction(real-time qPCR) was performed to assess transfection efficiency. HT29 and HCT116 cells were treated with different concentrations of XHC-HL-medicated serum. The cell counting kit-8(CCK-8) assay was used to detect cell proliferation and determine the optimal concentration and duration of medicated serum intervention. HT29 cells were divided into a normal control(NC) group, an XHC-HL(medicated serum treatment) group, and an XHC-HL+shLAMP2A(medicated serum treatment+LAMP2A knockdown) group. HCT116 cells were divided into a NC group, an XHC-HL group, and an XHC-HL+LAMP2A(medicated serum treatment+LAMP2A overexpression) group. CCK-8 was used to measure cell viability. Colony formation assay was employed to assess cell proliferation ability. Scratch and Transwell migration assays were conducted to evaluate cell migration ability, and Transwell invasion assay was used to detect cell invasion ability. Flow cytometry was adopted to determine apoptosis rates. WB and real-time qPCR were employed to detect the effect of XHC-HL on the protein and mRNA expression of LAMP2A, heat shock cognate protein 70(HSC70), heat shock protein 90(HSP90), and glyceraldehyde-3-phosphate dehydrogenase(GAPDH) in colorectal cancer cells. Differential expression analysis revealed that LAMP2A expression was significantly higher in colorectal cancer patients compared to that in normal controls. Survival analysis indicated that the key molecule of chaperone-mediated autophagy(CMA), LAMP2A, was closely associated with colorectal cancer progression. Gene set enrichment analysis showed that patients with high LAMP2A expression significantly upregulated tumor progression-related signaling pathways such as angiogenesis and immune suppression. Immune infiltration analysis found that patients with high LAMP2A expression had fewer CD8 T cell infiltrations in their tumor microenvironment. XHC-HL-medicated serum inhibited the viability of HT29 and HCT116 cells, with the optimal intervention concentration and duration being 20% and 48 hours, respectively. Compared to the NC group, XHC-HL inhibited the proliferation, migration, and invasion of HT29 and HCT116 cells, and induced apoptosis. The medicated serum treatment with LAMP2A knockdown further inhibited colorectal cancer cell proliferation, invasion, and migration, and promoted apoptosis, whereas overexpression of LAMP2A reversed the inhibitory effects of the medicated serum on proliferation, migration, and invasion, and reduced apoptosis rates. XHC-HL-medicated serum inhibited CMA by upregulating the protein and mRNA expression of LAMP2A, HSC70, and HSP90 and downregulating substrate protein GAPDH expression via the autophagy mediated by LAMP2A. In conclusion, XHC-HL-medicated serum inhibits the proliferation, migration, and invasion of colorectal cancer cells and induces apoptosis by downregulating the expression of the key CMA molecule LAMP2A and inhibiting CMA activity.
Humans
;
Colorectal Neoplasms/pathology*
;
Drugs, Chinese Herbal/pharmacology*
;
Lysosomal-Associated Membrane Protein 2/metabolism*
;
Cell Proliferation/drug effects*
;
Autophagy/drug effects*
;
HCT116 Cells
;
Cell Movement/drug effects*
;
Apoptosis/drug effects*
;
HT29 Cells
;
Serum/chemistry*
;
Coptis chinensis
3.Agrimoniae Herba-Coptidis Rhizoma inhibits angiogenesis in colorectal cancer inflammatory microenvironment based on network pharmacology and experiment validation.
Xin-Ling SHEN ; Hai-Yan PENG ; Huang-Jie FU ; Ya-Ping HE ; Zhi-Yu LI ; Min-Yan HOU ; Shu-Juan ZHANG ; Han XIONG
China Journal of Chinese Materia Medica 2024;49(21):5762-5770
This study aims to investigate the effect and mechanism of the herb pair Agrimoniae Herba-Coptidis Rhizoma in inhibiting angiogenesis in the colorectal cancer inflammatory microenvironment by using the method of network pharmacology and the zebrafish model. The method of network pharmacology was employed to obtain the active components, potential core targets, and signaling pathways regulated by the herb pair in inhibiting angiogenesis in the inflammatory microenvironment of colorectal cancer, on the basis of which the underlying mechanism was predicted. The zebrafish model of colorectal cancer was established, and the inflammatory microenvironment was modeled. The effects of different concentrations of the herb pair on the area, number, and length of intersegmental vessels(ISVs) of the zebrafish model were observed. Western blot and real-time quantitative PCR were employed to measure the protein and mRNA levels, respectively, of vascular endothelial growth factor A(VEGFA), vascular epidermal growth factor receptor 2(VEGFR2, also known as kdrl, Flk1), and vascular epidermal growth factor receptor 3(VEGFR3, also known as Flt4). A total of 18 active components and 488 potential targets of Agrimoniae Herba-Coptidis Rhizoma were predicted, and 108 common targets were shared by the herb pair and the disease. According to the results of KEGG pathway enrichment analysis, the angiogenesis-related factors VEGFA, kdrl, and Flt4 in the VEGFA/VEGFR2 signaling pathway were selected for verification. The zebrafish experiment showed that compared with the blank group, the model group showed increased area, number, and length of ISVs in the inflammatory microenvironment. Compared with the model group, the herb pair decreased the area, number, and length of ISVs in a concentration-dependent manner. Compared with the blank group, the model group showed up-regulated protein and mRNA levels of VEGFA, kdrl, and Flt4 in the inflammatory microenvironment. Compared with the model group, the herb pair down-regulated the protein and mRNA levels of VEGFA, kdrl, and Flt4 in a concentration-dependent manner. The results indicated that in the colorectal cancer inflammatory microenvironment, the herb pair Agrimoniae Herba-Coptidis Rhizoma could inhibit angiogenesis via multiple components, targets, and pathways. The anti-angiogenesis effect might be related to the down-regulation of the expression levels of angiogenesis-related factors VEGFA, kdrl, and Flt4 in the VEGFA/VEGFR2 signaling pathway.
Zebrafish
;
Animals
;
Drugs, Chinese Herbal/pharmacology*
;
Network Pharmacology
;
Colorectal Neoplasms/metabolism*
;
Neovascularization, Pathologic/drug therapy*
;
Humans
;
Vascular Endothelial Growth Factor A/metabolism*
;
Tumor Microenvironment/drug effects*
;
Angiogenesis Inhibitors/pharmacology*
;
Vascular Endothelial Growth Factor Receptor-2/metabolism*
;
Signal Transduction/drug effects*
;
Coptis chinensis
;
Inflammation/drug therapy*
;
Angiogenesis
4.Interpretation of the essential updates in guidelines for the prevention and treatment of chronic hepatitis B (Version 2022).
Hong YOU ; Ya Meng SUN ; Meng Yang ZHANG ; Yue Min NAN ; Xiao Yuan XU ; Tai Sheng LI ; Gui Qiang WANG ; Jin Lin HOU ; Zhongping DUAN ; Lai WEI ; Fu Sheng WANG ; Ji Dong JIA ; Hui ZHUANG
Chinese Journal of Hepatology 2023;31(4):385-388
Chinese Society of Hepatology and Chinese Society of Infectious Diseases, Chinese Medical Association update the guidelines for the prevention and treatment of chronic hepatitis B (version 2022) in 2022. The latest guidelines recommend more extensive screening and more active antiviral treating for hepatitis B virus infection. This article interprets the essential updates in the guidelines to help deepen understanding and better guide the clinical practice.
Humans
;
Hepatitis B, Chronic/drug therapy*
;
Hepatitis B/drug therapy*
;
Hepatitis B virus
;
Antiviral Agents/therapeutic use*
;
Gastroenterology
5.Material basis and molecular mechanism of Angelicae Sinensis Radix in activating blood:based on computer-aided drug design.
Jia LIN ; Juan YAO ; Min ZHANG ; Chao-Xin LI ; Ya-Ling LI ; Lu QIU ; Ye-Hu HOU ; Yong-Qi LIU ; Xiao-Jie JIN
China Journal of Chinese Materia Medica 2022;47(7):1942-1954
Angelicae Sinensis Radix excels in activating blood, but the scientific mechanism has not been systematically analyzed, thus limiting the development of the medicinal. This study employed the computer-aided drug design methods, such as structural similarity-based target reverse prediction, complex network analysis, molecular docking, binding free energy calculation, cluster analysis, and ADMET(absorption, distribution, metabolism, excretion, toxicity) calculation, and enzyme activity assay in vitro, to explore the components and mechanism of Angelicae Sinensis Radix in activating blood. Target reverse prediction and complex network analysis yielded 40 potential anticoagulant targets of the medicinal. Gene Ontology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis indicated that the targets mainly acted on the complement and coagulation cascade signaling pathway to exert the anticoagulant function. Among them, the key enzymes thrombin(THR) and coagulation factor Xa(FXa) in coagulation cascade and thrombosis were the drug targets for thromboembolic diseases. At the same time, molecular docking and cluster analysis showed that the medicinal had high selectivity for FXa. According to binding free energy score, 8 potential active components were selected for enzyme activity assay in vitro. The results demonstrated that 8 components inhibited THR and FXa, and the inhibition was stronger on FXa than on THR. The pharmacophore model of 8 active compounds was constructed, which suggested that the components had the common pharmacophore AAHH. The ADMET calculation result indicated that they had good pharmacokinetic properties and were safe. Based on target reverse prediction, complex network analysis, molecular docking and binding free energy calculation, anticoagulant activity in vitro, spatial binding conformation of molecules and targets, pharmacophore model construction, and ADMET calculation, this study preliminarily clarified the material basis and molecular mechanism of Angelicae Sinensis Radix in activating blood from the perspective of big data, and calculated the pharmacology and toxicology parameters of the active components. Our study, for the first time, revealed that the medicinal had obvious selectivity and pertinence for different coagulation proteins, reflecting the unique effect of different Chinese medicinals and the biological basis. Therefore, this study can provide clues for precision application of Angelicae Sinensis Radix and the development of the blood-activating components with modern technology.
Anticoagulants/pharmacology*
;
Blood Coagulation
;
Drug Design
;
Drugs, Chinese Herbal/pharmacology*
;
Molecular Docking Simulation
6.IGF-1 Accelerates Cell Aging by Inhibiting POLD1 Expression.
Yu Li HOU ; Yi Fei WANG ; Qiao SONG ; Xiao Min ZHANG ; Jing LIU ; Ya Qi WANG ; Yu Ting CUI ; Jing Xuan FU ; Zi Yi FENG ; Chi ZHANG ; Pei Chang WANG
Biomedical and Environmental Sciences 2022;35(11):981-991
OBJECTIVE:
The individual cascades of the insulin-like growth factor-1 (IGF-1) signaling pathway and the molecular mechanism of aging have not been fully clarified. In the current study, we explored the effect of DNA polymerase delta 1 (POLD1) on the IGF-1 signaling pathway in cell aging.
METHODS:
First, we analyzed the relationship between IGF-1 and POLD1 expression in aging. To investigate the effect of IGF-1 on POLD1 expression and aging, the 2BS cells were incubated with young-age or old-age human serum, IGF-1 protein, or linsitinib. Next, the effect of IGF-1 on aging was examined in the 2BS cells with increased or decreased POLD1 expression to clarify the molecular mechanism.
RESULTS:
In this study, we found that IGF-1 expression increased and POLD1 expression decreased with aging in human serum and hippocampal tissues of SAMP8 mice, and a negative relationship between IGF-1 and POLD1 expression was observed. Furthermore, the cells cultured with old-age human serum or IGF-1 showed lower POLD1 expression and more pronounced senescence characteristics, and the effect could be reversed by treatment with linsitinib or overexpression of POLD1, while the effect of linsitinib on cell aging could be reversed with the knockdown of POLD1.
CONCLUSION
Taken collectively, our findings demonstrate that IGF-1 promotes aging by binding to IGF-1R and inhibiting the expression of POLD1. These findings offer a new target for anti-aging strategies.
Humans
;
Animals
;
Mice
;
Insulin-Like Growth Factor I/pharmacology*
;
Cellular Senescence
;
Aging
;
Hippocampus
;
DNA Polymerase III
7.Application of mixed reality technology in the field of hepatobiliary surgery.
Chinese Journal of Surgery 2022;60(1):17-21
Mixed reality is a new three-dimensional presentation technology that combines the virtual digital world with the real world, which has been initially applied in the field of hepatobiliary surgery. Compared with virtual reality, augmented reality and three-dimensional visualization technology, mixed reality technology has unique advantages in preoperative evaluation and formulation of surgical plan, real-time accurate navigation during operation and three-dimensional virtual teaching. And it is a new generation of auxiliary tool for precision hepatobiliary surgery. This paper describes the application and research progress of mixed reality technology in the field of hepatobiliary surgery, and discusses its application potential and current limitations.
Augmented Reality
;
Humans
;
Imaging, Three-Dimensional
;
Surgery, Computer-Assisted
;
Technology
;
Virtual Reality
8.3- to 24-month Follow-up on COVID-19 with Pulmonary Tuberculosis Survivors after Discharge: Results from a Prospective, Multicenter Study
Ya Jing WANG ; Yu Xing ZONG ; Hui Gui WU ; Lin Yuan QI ; Zhen Hui LI ; Yu Xin JI ; Lin TONG ; Lei ZHANG ; Bo Ming YANG ; Ye Pu YANG ; Ke Ji LI ; Rong Fu XIAO ; Song Lin ZHANG ; Hong Yun HU ; De Hong LIU ; Fang Shou XU ; Sheng SUN ; Wei WU ; Ya MAO ; Qing Min LI ; Hua Hao HOU ; Yuan Zhao GONG ; Yang GUO ; Wen Li JIAO ; Jin QIN ; Yi Ding WANG ; Fang WANG ; Li GUAN ; Gang LIN ; Yan MA ; Ping Yan WANG ; Nan Nan SHI
Biomedical and Environmental Sciences 2022;35(12):1091-1099
Objective Coronavirus disease 2019 (COVID-19) and tuberculosis (TB) are major public health and social issues worldwide. The long-term follow-up of COVID-19 with pulmonary TB (PTB) survivors after discharge is unclear. This study aimed to comprehensively describe clinical outcomes, including sequela and recurrence at 3, 12, and 24 months after discharge, among COVID-19 with PTB survivors. Methods From January 22, 2020 to May 6, 2022, with a follow-up by August 26, 2022, a prospective, multicenter follow-up study was conducted on COVID-19 with PTB survivors after discharge in 13hospitals from four provinces in China. Clinical outcomes, including sequela, recurrence of COVID-19, and PTB survivors, were collected via telephone and face-to-face interviews at 3, 12, and 24 months after discharge. Results Thirty-two COVID-19 with PTB survivors were included. The median age was 52 (45, 59) years, and 23 (71.9%) were men. Among them, nearly two-thirds (62.5%) of the survivors were moderate, three (9.4%) were severe, and more than half (59.4%) had at least one comorbidity (PTB excluded). The proportion of COVID-19 survivors with at least one sequela symptom decreased from 40.6% at 3 months to 15.8% at 24 months, with anxiety having a higher proportion over a follow-up. Cough and amnesia recovered at the 12-month follow-up, while anxiety, fatigue, and trouble sleeping remained after 24 months. Additionally, one (3.1%) case presented two recurrences of PTB and no re-positive COVID-19 during the follow-up period. Conclusion The proportion of long symptoms in COVID-19 with PTB survivors decreased over time, while nearly one in six still experience persistent symptoms with a higher proportion of anxiety. The recurrence of PTB and the psychological support of COVID-19 with PTB after discharge require more attention.
9.Molecular Mechanism Analysis of Jiangtang Xiaozhi Tablets in Treatment of NAFLD
Min HOU ; Wen-jing GAO ; Yang DU ; Pan WANG ; Ju-qin PENG ; Ya-dong LIN ; Fu-zhi ZHANG ; Jun-guo REN ; Jian-xun LIU
Chinese Journal of Experimental Traditional Medical Formulae 2021;27(5):147-157
Objective:To explore the molecular mechanism of Jiangtang Xiaozhi tablets (JTXZT) in the treatment of non-alcoholic fatty liver disease (NAFLD) by means of network pharmacology and molecular docking. Method:With the help of traditional Chinese medicine (TCM) Systems Pharmacology Database and Analysis Platform (TCMSP), TCMs Integrated Database (TCMID), Encyclopedia of TCM (ETCM) and Bioinformatics Analysis Tool for Molecular Mechanism of TCM (BATMAN-TCM), the chemical compositions of medicinal materials in JTXZT were obtained, the compound targets were predicted in SwissTargetPrediction database and STITCH database. The targets of NAFLD were searched by The Human Gene Database (GeneCards), Online Mendelian Inheritance in Man (OMIM), Therapeutic Target Database (TTD) and DisGeNET, and intersection analysis was performed with the targets of the active ingredients to obtain the targets of JTXZT for treatment of NAFLD. Based on STRING 11.0 database, the protein-protein interaction (PPI) network of therapeutic targets was constructed, and the enrichment analysis of therapeutic targets was carried out by DAVID 6.8. Finally, the interaction characteristics of key components and core therapeutic targets of JTXZT for treatment of NAFLD were verified based on molecular docking. Result:The key components of JTXZT for treatment of NAFLD were quercetin, luteolin, kaempferol, berberine, isorhamnetin, betulinic acid, oleanolic acid, ursolic acid. formononetin and hexitol, and the core targets of JTXZT for treatment of NAFLD were mitogen-activated protein kinase 1 (MAPK1), Jun proto-oncogene, activator protein-1 (AP-1) transcription factor subunit (JUN), MAPK3, protein kinase B1 (AKT1 or Akt1), tumor protein p53 (TP53), E1A binding protein p300 (EP300), Fos proto-oncogene, AP-1 transcription factor subunit (FOS), tumor necrosis factor (TNF),amyloid beta precursor protein (APP) and cytochrome P450 family 2 subfamily E member 1 (CYP2E1). Biological function and pathway enrichment analysis showed that JTXZT mainly through xenobiotic metabolic process, oxidation-reduction process, cholesterol metabolic process and other biological processes, regulating phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway, MAPK signaling pathway, NAFLD and insulin signaling pathway to play a role in the treatment of NAFLD. The results of molecular docking showed that the active components of JTXZT had a good affinity with the core targets of JTXZT for the treatment of NAFLD. Conclusion:JTXZT treats NAFLD through multiple active components, multiple key targets and multiple action pathways.
10.TREM2: A Novel Potential Biomarker of Alzheimer's Disease.
Xiao Min ZHANG ; Jing LIU ; Min CAO ; Ting Ting YANG ; Ya Qi WANG ; Yu Li HOU ; Qiao SONG ; Yu Ting CUI ; Pei Chang WANG
Biomedical and Environmental Sciences 2021;34(9):719-724
Aged
;
Aged, 80 and over
;
Alzheimer Disease/diagnosis*
;
Animals
;
Biomarkers/blood*
;
Cognitive Dysfunction
;
Female
;
Humans
;
Male
;
Membrane Glycoproteins/blood*
;
Mental Status and Dementia Tests
;
Mice
;
Middle Aged
;
Models, Animal
;
Morris Water Maze Test
;
Parkinson Disease/diagnosis*
;
ROC Curve
;
Receptors, Immunologic/blood*
;
Sensitivity and Specificity

Result Analysis
Print
Save
E-mail