1.Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway
Zhao LI ; Ya-Hong WU ; Ye-Qing GUO ; Xiao-Jia MIN ; Ying LIN
The Korean Journal of Physiology and Pharmacology 2025;29(2):191-204
To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms.RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.
2.Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway
Zhao LI ; Ya-Hong WU ; Ye-Qing GUO ; Xiao-Jia MIN ; Ying LIN
The Korean Journal of Physiology and Pharmacology 2025;29(2):191-204
To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms.RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.
3.Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway
Zhao LI ; Ya-Hong WU ; Ye-Qing GUO ; Xiao-Jia MIN ; Ying LIN
The Korean Journal of Physiology and Pharmacology 2025;29(2):191-204
To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms.RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.
4.Clonorchis sinensis and Cholangiocarcinoma
Journal of Korean Medical Science 2025;40(16):e145-
Clonorchiasis is a parasitic disease caused by Clonorchis sinensis, a trematode that inhabits the intrahepatic bile ducts of humans and mammals. C. sinensis is one of common foodborne trematodes, prevalent in East Asia including Korea. The International Agency for Research on Cancer reclassified C. sinensis as the Group 1 biological carcinogen of human cholangiocarcinoma (CCA). Evidence supporting the carcinogenicity of C. sinensis includes epidemiological studies showing increased prevalence and odds ratio (OR) of CCA in clonorchiasis patients, the development of CCA in experimental animals, and molecular studies. Approximately 10% of CCA in Korea are believed to be solely caused by clonorchiasis, with an OR of 4.7 for CCA risk among clonorchiasis patients. All hamsters exposed to both of C. sinensis and N-nitrosodimethylamine (NDMA) developed CCA while those exposed to either C. sinensis or NDMA alone did not. In vitro studies using cell models investigated carcinogenetic changes of the intracellular molecules and genes following stimulation with a soluble extract of C. sinensis. The in vitro stimulated cells showed a significant shift to G2/M phage, produced oncogenic molecules, changed expression of oncogenes, increased cell proliferation and suppressed apoptosis. Additionally, the gap-junction proteins between cells, such as connexin (Cx) 43, Cx 26, and Cx 32, were changed significantly, disrupting intercellular homeostasis. These findings suggest that C. sinensis and nitrogen compounds synergistically stimulate the cholangiocytes to become neoplastic. C. sinensis is a biological carcinogen of human CCA, and the World Health Organization guidelines enlist food-borne trematodes as one of target neglected tropical diseases to be eliminated by 2030. The present article reviews and updates perspectives on clonorchiasis, focusing on carcinogenesis.
5.Clonorchis sinensis and Cholangiocarcinoma
Journal of Korean Medical Science 2025;40(16):e145-
Clonorchiasis is a parasitic disease caused by Clonorchis sinensis, a trematode that inhabits the intrahepatic bile ducts of humans and mammals. C. sinensis is one of common foodborne trematodes, prevalent in East Asia including Korea. The International Agency for Research on Cancer reclassified C. sinensis as the Group 1 biological carcinogen of human cholangiocarcinoma (CCA). Evidence supporting the carcinogenicity of C. sinensis includes epidemiological studies showing increased prevalence and odds ratio (OR) of CCA in clonorchiasis patients, the development of CCA in experimental animals, and molecular studies. Approximately 10% of CCA in Korea are believed to be solely caused by clonorchiasis, with an OR of 4.7 for CCA risk among clonorchiasis patients. All hamsters exposed to both of C. sinensis and N-nitrosodimethylamine (NDMA) developed CCA while those exposed to either C. sinensis or NDMA alone did not. In vitro studies using cell models investigated carcinogenetic changes of the intracellular molecules and genes following stimulation with a soluble extract of C. sinensis. The in vitro stimulated cells showed a significant shift to G2/M phage, produced oncogenic molecules, changed expression of oncogenes, increased cell proliferation and suppressed apoptosis. Additionally, the gap-junction proteins between cells, such as connexin (Cx) 43, Cx 26, and Cx 32, were changed significantly, disrupting intercellular homeostasis. These findings suggest that C. sinensis and nitrogen compounds synergistically stimulate the cholangiocytes to become neoplastic. C. sinensis is a biological carcinogen of human CCA, and the World Health Organization guidelines enlist food-borne trematodes as one of target neglected tropical diseases to be eliminated by 2030. The present article reviews and updates perspectives on clonorchiasis, focusing on carcinogenesis.
6.Clonorchis sinensis and Cholangiocarcinoma
Journal of Korean Medical Science 2025;40(16):e145-
Clonorchiasis is a parasitic disease caused by Clonorchis sinensis, a trematode that inhabits the intrahepatic bile ducts of humans and mammals. C. sinensis is one of common foodborne trematodes, prevalent in East Asia including Korea. The International Agency for Research on Cancer reclassified C. sinensis as the Group 1 biological carcinogen of human cholangiocarcinoma (CCA). Evidence supporting the carcinogenicity of C. sinensis includes epidemiological studies showing increased prevalence and odds ratio (OR) of CCA in clonorchiasis patients, the development of CCA in experimental animals, and molecular studies. Approximately 10% of CCA in Korea are believed to be solely caused by clonorchiasis, with an OR of 4.7 for CCA risk among clonorchiasis patients. All hamsters exposed to both of C. sinensis and N-nitrosodimethylamine (NDMA) developed CCA while those exposed to either C. sinensis or NDMA alone did not. In vitro studies using cell models investigated carcinogenetic changes of the intracellular molecules and genes following stimulation with a soluble extract of C. sinensis. The in vitro stimulated cells showed a significant shift to G2/M phage, produced oncogenic molecules, changed expression of oncogenes, increased cell proliferation and suppressed apoptosis. Additionally, the gap-junction proteins between cells, such as connexin (Cx) 43, Cx 26, and Cx 32, were changed significantly, disrupting intercellular homeostasis. These findings suggest that C. sinensis and nitrogen compounds synergistically stimulate the cholangiocytes to become neoplastic. C. sinensis is a biological carcinogen of human CCA, and the World Health Organization guidelines enlist food-borne trematodes as one of target neglected tropical diseases to be eliminated by 2030. The present article reviews and updates perspectives on clonorchiasis, focusing on carcinogenesis.
7.Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway
Zhao LI ; Ya-Hong WU ; Ye-Qing GUO ; Xiao-Jia MIN ; Ying LIN
The Korean Journal of Physiology and Pharmacology 2025;29(2):191-204
To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms.RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.
8.Clonorchis sinensis and Cholangiocarcinoma
Journal of Korean Medical Science 2025;40(16):e145-
Clonorchiasis is a parasitic disease caused by Clonorchis sinensis, a trematode that inhabits the intrahepatic bile ducts of humans and mammals. C. sinensis is one of common foodborne trematodes, prevalent in East Asia including Korea. The International Agency for Research on Cancer reclassified C. sinensis as the Group 1 biological carcinogen of human cholangiocarcinoma (CCA). Evidence supporting the carcinogenicity of C. sinensis includes epidemiological studies showing increased prevalence and odds ratio (OR) of CCA in clonorchiasis patients, the development of CCA in experimental animals, and molecular studies. Approximately 10% of CCA in Korea are believed to be solely caused by clonorchiasis, with an OR of 4.7 for CCA risk among clonorchiasis patients. All hamsters exposed to both of C. sinensis and N-nitrosodimethylamine (NDMA) developed CCA while those exposed to either C. sinensis or NDMA alone did not. In vitro studies using cell models investigated carcinogenetic changes of the intracellular molecules and genes following stimulation with a soluble extract of C. sinensis. The in vitro stimulated cells showed a significant shift to G2/M phage, produced oncogenic molecules, changed expression of oncogenes, increased cell proliferation and suppressed apoptosis. Additionally, the gap-junction proteins between cells, such as connexin (Cx) 43, Cx 26, and Cx 32, were changed significantly, disrupting intercellular homeostasis. These findings suggest that C. sinensis and nitrogen compounds synergistically stimulate the cholangiocytes to become neoplastic. C. sinensis is a biological carcinogen of human CCA, and the World Health Organization guidelines enlist food-borne trematodes as one of target neglected tropical diseases to be eliminated by 2030. The present article reviews and updates perspectives on clonorchiasis, focusing on carcinogenesis.
9.Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway
Zhao LI ; Ya-Hong WU ; Ye-Qing GUO ; Xiao-Jia MIN ; Ying LIN
The Korean Journal of Physiology and Pharmacology 2025;29(2):191-204
To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms.RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.
10.Study on anti-depression effect of Suanzaoren Decoction based on liver metabolomics.
Jing LI ; Ya-Nan TONG ; Hong-Tao WANG ; Shao-Hua ZHAO ; Wei-Yan CHEN ; Zhi-Wei LI ; Min-Yan LIU
China Journal of Chinese Materia Medica 2025;50(1):19-31
To explore the anti-depression effect of Suanzaoren Decoction(SZRD), the regulatory effects on endogenous metabolites in the liver of rats with depression induced by chronic unpredictable mild stress(CUMS) were analyzed by using LC-MS metabolomics. The rats were randomly divided into normal control group, model group, low-dose SZRD group, high-dose SZRD group, and positive drug group. The CUMS depression model was replicated by applying a variety of stimuli, such as fasting and water deprivation, ice water swimming, hot water swimming, day and night reversal, tail clamping, and restraint for rats. Modeling and treatment were conducted for 56 days. The behavioral indexes of rats in each group, including body weight, open field test, sucrose preference test, and tail suspension test, were observed. Plasma samples and liver tissue samples were collected, and the contents of 5-hydroxytryptamine(5-HT), dopamine(DA), and norepinephrine(NE) in plasma were measured using enzyme-linked immunosorbent assay(ELISA). Meanwhile, the regulatory effects of SZRD on the liver metabolic profile of CUMS model rats were analyzed by the LC-MS metabolomics method. The results show that SZRD can significantly improve the depression-like behavior of CUMS model rats and increase the neurotransmitter levels of 5-HT, DA, and NE in plasma. A total of 24 different metabolites in the rats' liver are identified using the LC-MS metabolomics method, and SZRD can reverse 13 of these metabolites. Metabolic pathway analysis indicates that nine metabolic pathways are found to be significantly associated with depression, and in the low-dose SZRD group, four pathways can be regulated, including pentose phosphate pathway, purine metabolism, inositol phosphate metabolism, and sphingolipid metabolism. In the high-dose SZRD group, two metabolic pathways can be regulated, including sphingolipid metabolism and glycerol glycerophospholipid metabolism. Sphingolipid metabolism is a metabolic pathway that can be regulated by SZRD at different doses, so it is speculated that it may be the primary pathway through which SZRD can alleviate metabolic disturbances in the liver of CUMS model rats.
Animals
;
Rats
;
Drugs, Chinese Herbal/administration & dosage*
;
Metabolomics
;
Depression/metabolism*
;
Male
;
Liver/drug effects*
;
Rats, Sprague-Dawley
;
Antidepressive Agents/administration & dosage*
;
Serotonin/blood*
;
Humans
;
Disease Models, Animal
;
Behavior, Animal/drug effects*

Result Analysis
Print
Save
E-mail