1.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
2.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
3.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
4.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
5.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
6.Targeting B7-H3 inhibited growth,migration,and angiogenesis of human umbilical vein endothelial cells
Yu LIU ; Nan-Nan WANG ; Ke NIU ; Hui-Juan LING ; Ya-Yu ZHU ; Wei HU ; Li-Wen CHEN
Chinese Pharmacological Bulletin 2024;40(7):1311-1316
Aim To explore the effect of targeted inhi-bition of co-signaling molecule B7-H3 on the growth,migration,and angiogenesis ability of human umbilical vein endothelial cells(HUVECs).Methods Small interference RNA was used to knock down HUVECs B7-H3 molecules.CCK-8 test was used to detect cell proliferation at 24 h,48 h and 72 h.Transwell test was then used to detect 24 h cell migration,and three-dimensional cell culture was used to observe cell angio-genesis.Results Compared with the negative control group(siRNA-Control),siRNA-720,siRNA-1707 and siRNA-1690 had different inhibitory effects on the expression of B7-H3.B7-H3 inhibition of siRNA-1690 was significantly higher than that of siRNA-720 and siRNA-1707,and siRNA-1690 sequence was chosen for follow-up experiment.The results of CCK-8 cell vi-ability assay showed that the proliferation ability of HU-VECs decreased by 24%,22%(P>0.05,compared with 24 h)and 15%(P<0.05,compared with 48 h)respectively at 24 h,48 h and 72 h after B7-H3 knockout.The migration ability of B7-H3 for 24 h was significantly lower than that of siRNA-Control group(P<0.01).The results of three-dimensional cell cul-ture showed that the angiogenic ability of HUVECs de-creased significantly after si-B7-H3 knockdown of B7-H3 gene(P<0.01).Conclusion Targeting B7-H3 inhibits the growth,migration,and angiogenesis of hu-man umbilical vein endothelial cells.
7.Role and mechanism of neuronal restriction silencing factor REST/NRSF in regulation of epilepsy
Hui LIU ; Bai-Hui YU ; Ya-Qi WANG ; Yi-Ling CHEN ; Zi-Hao CHENG ; Jia-Rui MA ; Zi-Shuo KANG ; Fan ZHANG
Chinese Pharmacological Bulletin 2024;40(9):1727-1734
Aim To investigate the effect and role of neuronal restriction silencing factor(REST/NRSF)in epilepsy disorder.Methods Immunohistochemistry,immunofluorescence,Western blot and qPCR tech-niques were used to detect REST/NRSF expression levels in hippocampal tissues of mice induced by kainic acid and human brain tissue.Viral injections,EEG re-cordings and behavioral methods were used to test the effects on epileptic mice after knockdown and overex-pression of REST/NRSF in the hippocampal CA1 re-gion,respectively.Results The positive rate of REST/NRSF in the lesions of epileptic patients was significantly higher compared with that in the control group.The levels of REST/NRSF protein and mRNA in the CA1 region of the hippocampus of mice in the KA model group were significantly higher.Kv7.2 and Kv7.3 potassium channel mRNA expression levels were significantly down-regulated.Significant up-regu-lation of REST/NRSF expression levels was observed in mouse hippocampus after NMDA injection.Knock-down of REST/NRSF in the CA1 region of hippocam-pus significantly elevated the expression levels of Kv7.2 and Kv7.3 potassium channel mRNAs.The fre-quency of EEG spiking and sharp-wave issuance and epileptic seizure grade were significantly lower.Over-expression of REST/NRSF in the CA1 region of hippo-campus significantly reduced the mRNA expression lev-els of Kv7.2 and Kv7.3 potassium channels.The fre-quency of EEG spiking and sharp-wave issuance was significantly higher and epileptic symptoms were exac-erbated.Conclusion REST/NRSF in mouse hipp-ocampal brain regions is involved in epileptic disease development through transcriptional regulation of Kv7.2 and Kv7.3 potassium channels.
8.Clinical analysis of uterine artery embolization combined with ultrasound-guided curettage in treatment of caesarean scar pregnancy
Wen-Zhen WANG ; Ling-Yun WEI ; Ya-Ling WEN ; Xiao-Chun LIU
Journal of Regional Anatomy and Operative Surgery 2024;33(8):689-692
Objective To evaluate the efficacy of uterine artery embolization(UAE)combined with ultrasound-guided curettage in the treatment of type Ⅱ and type Ⅲ caesarean scar pregnancy(CSP).Methods The clinical data of 90 patient with CSP in our hospital were analyzed retrospectively,the patients were divided into type Ⅱ group and type Ⅲ group according to preoperative vaginal color Doppler ultrasound.Patients in both groups were treated with UAE combined with ultrasound-guided curettage.The intraoperative and postoperative conditions of patients between the two groups were compared and analyzed.Results The cure rate of type Ⅱ group(92.5%)was higher than that of type Ⅲ group(65.2%),the intraoperative blood loss,time of postoperative serum β-hCG turned negative,postoperative mass disappearance time of patients in type Ⅱ group were less/shorter than those in type Ⅲ group,the differences were statistically significant(P<0.05);there was no statistical difference in length of hospitalization or time to menstruation recovery of patients between the two groups(P>0.05).Conclusion UAE combined with ultrasound-guided curettage is ideal for patients with type Ⅱ CSP at 8 to 10 weeks of gestation,and can be used as a recommended treatment.However,the cure rate of this method for type Ⅲ CSP is low,the comprehensive choice should be considered,including the specific situation of the patient and the local medical level.
9.Drug resistance and phylo-typing of ESBL-producing Escherichia coli from diarrheic lambs in Kashgar area,Xinjiang
Yun HU ; Bai-Li ZHENG ; Wei-Li CHEN ; Ya-Ling CHENG ; Lan MA ; Pan-Pan TONG ; Ying-Yu LIU
Chinese Journal of Zoonoses 2024;40(8):716-722
The objective of this study was to determine the frequency and resistance patterns of ESBL-producing E.coli in lambs with diarrhea in the Kashi area,Xinjiang.The findings may provide guidance for the prevention and control of clinical E.coli disease.We collected 385 samples of perianal feces from lambs with diarrhea in the Kashgar area.From these samples,we isolated 371 strains of E.coli.We then used the double-paper-sheet synergistic method to screen for ESBL-producing E.coli.Additionally,we conducted analyses to identify drug-resistance genes,analyze drug resistance,and study the phylo-typing of the screened strains.Of 371 E.coli strains,204 were identified as ESBL-producing strains.The prevalence rates of blaCTX-M,blaCTX-M-1G,blaCTX-M-9G,and bla TEM resistance genes was 67.65%,69.12%,30.39%,and 63.73%,respectively.All ESBL-pro-ducing strains were resistant to multiple drugs,with resistance rates ranging from 90.69%to 100%for eight specific drugs:ampicillin,cefotaxime,gentamicin,enrofloxacin,azithromy-cin,tetracycline,chloramphenicol,methotrexate,and amitrazine.The phylogenetic subgroups of the strains were distributed primarily in groups A and D.Among group A strains,41.11%exhibited resistance to ten drugs,whereas among group D strains,40%exhibited resistance to 11 drugs.ESBL-pro-ducing strains of Escherichia coli are the main pathogens cau-sing diarrhea in lambs in the Kashgar region;group A is the main group,and all groups are multi-drug resistant.
10.Development of a Prognostic Model for Overall Survival Adult Patients with Core Binding Factor Acute Myeloid Leukaemia
Lu-Yao SHI ; Ling-Ling LI ; Tao LI ; Ya-Fei LI ; Yan-Fang LIU ; Zhong-Xing JIANG ; Shu-Juan WANG ; Chong WANG
Journal of Experimental Hematology 2024;32(3):693-701
Objective:To analyze the factors affecting overall survival(OS)of adult patients with core-binding factor acute myeloid leukemia(CBF-AML)and establish a prediction model.Methods:A total of 216 newly diagnosed patients with CBF-AML in the First Affiliated Hospital of Zhengzhou University from May 2015 to July 2021 were retrospectively analyzed.The 216 CBF-AML patients were divided into the training and the validation cohort at 7:3 ratio.The Cox regression model was used to analyze the clinical factors affecting OS.Stepwise regression was used to establish the optimal model and the nomogram.Receiver operating characteristic(ROC)curve,calibration curve and decision curve analysis(DCA)were used to evaluate the model performance.Results:Age(≥ 55 years old),peripheral blood blast(≥80%),fusion gene(AML1-ETO),KIT mutations were identified as independent adverse factors for OS.The area under the ROC curve at 3-year was 0.772 and 0.722 in the training cohort and validation cohort,respectively.The predicted value of the calibration curve is in good agreement with the measured value.DCA shows that this model performs better than a single factor.Conclusion:This prediction model is simple and feasible,and can effectively predict the OS of CBF-AML,and provide a basis for treatment decision.

Result Analysis
Print
Save
E-mail