1.Parkinsonism in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy: Clinical Features and Biomarkers
Chih-Hao CHEN ; Te-Wei WANG ; Yu-Wen CHENG ; Yung-Tsai CHU ; Mei-Fang CHENG ; Ya-Fang CHEN ; Chin-Hsien LIN ; Sung-Chun TANG
Journal of Stroke 2025;27(1):122-127
2.Parkinsonism in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy: Clinical Features and Biomarkers
Chih-Hao CHEN ; Te-Wei WANG ; Yu-Wen CHENG ; Yung-Tsai CHU ; Mei-Fang CHENG ; Ya-Fang CHEN ; Chin-Hsien LIN ; Sung-Chun TANG
Journal of Stroke 2025;27(1):122-127
3.Parkinsonism in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy: Clinical Features and Biomarkers
Chih-Hao CHEN ; Te-Wei WANG ; Yu-Wen CHENG ; Yung-Tsai CHU ; Mei-Fang CHENG ; Ya-Fang CHEN ; Chin-Hsien LIN ; Sung-Chun TANG
Journal of Stroke 2025;27(1):122-127
4.Structural insights into the distinct ligand recognition and signaling of the chemerin receptors CMKLR1 and GPR1.
Xiaowen LIN ; Lechen ZHAO ; Heng CAI ; Xiaohua CHANG ; Yuxuan TANG ; Tianyu LUO ; Mengdan WU ; Cuiying YI ; Limin MA ; Xiaojing CHU ; Shuo HAN ; Qiang ZHAO ; Beili WU ; Maozhou HE ; Ya ZHU
Protein & Cell 2025;16(5):381-385
5.A multicenter study of neonatal stroke in Shenzhen,China
Li-Xiu SHI ; Jin-Xing FENG ; Yan-Fang WEI ; Xin-Ru LU ; Yu-Xi ZHANG ; Lin-Ying YANG ; Sheng-Nan HE ; Pei-Juan CHEN ; Jing HAN ; Cheng CHEN ; Hui-Ying TU ; Zhang-Bin YU ; Jin-Jie HUANG ; Shu-Juan ZENG ; Wan-Ling CHEN ; Ying LIU ; Yan-Ping GUO ; Jiao-Yu MAO ; Xiao-Dong LI ; Qian-Shen ZHANG ; Zhi-Li XIE ; Mei-Ying HUANG ; Kun-Shan YAN ; Er-Ya YING ; Jun CHEN ; Yan-Rong WANG ; Ya-Ping LIU ; Bo SONG ; Hua-Yan LIU ; Xiao-Dong XIAO ; Hong TANG ; Yu-Na WANG ; Yin-Sha CAI ; Qi LONG ; Han-Qiang XU ; Hui-Zhan WANG ; Qian SUN ; Fang HAN ; Rui-Biao ZHANG ; Chuan-Zhong YANG ; Lei DOU ; Hui-Ju SHI ; Rui WANG ; Ping JIANG ; Shenzhen Neonatal Data Network
Chinese Journal of Contemporary Pediatrics 2024;26(5):450-455
Objective To investigate the incidence rate,clinical characteristics,and prognosis of neonatal stroke in Shenzhen,China.Methods Led by Shenzhen Children's Hospital,the Shenzhen Neonatal Data Collaboration Network organized 21 institutions to collect 36 cases of neonatal stroke from January 2020 to December 2022.The incidence,clinical characteristics,treatment,and prognosis of neonatal stroke in Shenzhen were analyzed.Results The incidence rate of neonatal stroke in 21 hospitals from 2020 to 2022 was 1/15 137,1/6 060,and 1/7 704,respectively.Ischemic stroke accounted for 75%(27/36);boys accounted for 64%(23/36).Among the 36 neonates,31(86%)had disease onset within 3 days after birth,and 19(53%)had convulsion as the initial presentation.Cerebral MRI showed that 22 neonates(61%)had left cerebral infarction and 13(36%)had basal ganglia infarction.Magnetic resonance angiography was performed for 12 neonates,among whom 9(75%)had involvement of the middle cerebral artery.Electroencephalography was performed for 29 neonates,with sharp waves in 21 neonates(72%)and seizures in 10 neonates(34%).Symptomatic/supportive treatment varied across different hospitals.Neonatal Behavioral Neurological Assessment was performed for 12 neonates(33%,12/36),with a mean score of(32±4)points.The prognosis of 27 neonates was followed up to around 12 months of age,with 44%(12/27)of the neonates having a good prognosis.Conclusions Ischemic stroke is the main type of neonatal stroke,often with convulsions as the initial presentation,involvement of the middle cerebral artery,sharp waves on electroencephalography,and a relatively low neurodevelopment score.Symptomatic/supportive treatment is the main treatment method,and some neonates tend to have a poor prognosis.
6.Investigation and disposal of a cluster of suspected neonatal bloodstream infection with carbapenem-resistant Klebsiella pneumoniae
Yu-Lin LI ; Wen-Ting CHEN ; Xue-Yun LI ; Chan NIE ; Song-Tao HAN ; Li-Yuan CHEN ; Lan TANG ; Zhen-Yu WANG ; Ya-Hui LI ; Yan XU ; Xia MU
Chinese Journal of Infection Control 2024;23(8):1031-1036
Objective To investigate the causes of a cluster of suspected neonatal carbapenem-resistant Klebsiella pneumoniae(CRKP)bloodstream infection(BSI)in the neonatal department of a hospital,and provide references for the effective control of the occurrence of healthcare-associated infection(HAI).Methods Epidemiological in-vestigation on 3 neonates with CRKP BSI in the neonatal department from January 31 to February 6,2023 was per-formed.Specimens from environmental object surfaces were taken for environmental hygiene monitoring,and effec-tive control measures were taken according to the risk factors.Results From January 31 to February 6,2023,a to-tal of 60 neonates were admitted in the neonatal department,including 16 with peripherally inserted central venous catheter(PICC).Three neonates had CRKP BSI,with a incidence of 5.00%.There were 33 hospitalized neonates on the day(February 7)when the cluster of HAI was reported,with a prevalence rate of 9.09%(3/33).CRKP BSI rate in the neonatal department of this hospital from January 31 to February 6,2023 was higher than that in 2022(P<0.001).The incubators of the 3 neonates with CRKP BSI were in the same ward and adjacent to each other.The first neonate with CRKP BSI(who developed BSI on January 31)underwent PICC maintenance on Feb-ruary 4,and the other 2 neonates with PICC maintenance immediately following the first one also developed CRKP BSI.CRKP were isolated from blood culture of all 3 neonates,and antimicrobial susceptibility testing results were consistent.Conclusion The occurrence of the cluster event of neonatal CRKP BSI may be related to the failure of strict implementation of aseptic procedures during PICC maintenance and cross contamination among items.
7.Expert consensus on ethical requirements for artificial intelligence (AI) processing medical data.
Cong LI ; Xiao-Yan ZHANG ; Yun-Hong WU ; Xiao-Lei YANG ; Hua-Rong YU ; Hong-Bo JIN ; Ying-Bo LI ; Zhao-Hui ZHU ; Rui LIU ; Na LIU ; Yi XIE ; Lin-Li LYU ; Xin-Hong ZHU ; Hong TANG ; Hong-Fang LI ; Hong-Li LI ; Xiang-Jun ZENG ; Zai-Xing CHEN ; Xiao-Fang FAN ; Yan WANG ; Zhi-Juan WU ; Zun-Qiu WU ; Ya-Qun GUAN ; Ming-Ming XUE ; Bin LUO ; Ai-Mei WANG ; Xin-Wang YANG ; Ying YING ; Xiu-Hong YANG ; Xin-Zhong HUANG ; Ming-Fei LANG ; Shi-Min CHEN ; Huan-Huan ZHANG ; Zhong ZHANG ; Wu HUANG ; Guo-Biao XU ; Jia-Qi LIU ; Tao SONG ; Jing XIAO ; Yun-Long XIA ; You-Fei GUAN ; Liang ZHU
Acta Physiologica Sinica 2024;76(6):937-942
As artificial intelligence technology rapidly advances, its deployment within the medical sector presents substantial ethical challenges. Consequently, it becomes crucial to create a standardized, transparent, and secure framework for processing medical data. This includes setting the ethical boundaries for medical artificial intelligence and safeguarding both patient rights and data integrity. This consensus governs every facet of medical data handling through artificial intelligence, encompassing data gathering, processing, storage, transmission, utilization, and sharing. Its purpose is to ensure the management of medical data adheres to ethical standards and legal requirements, while safeguarding patient privacy and data security. Concurrently, the principles of compliance with the law, patient privacy respect, patient interest protection, and safety and reliability are underscored. Key issues such as informed consent, data usage, intellectual property protection, conflict of interest, and benefit sharing are examined in depth. The enactment of this expert consensus is intended to foster the profound integration and sustainable advancement of artificial intelligence within the medical domain, while simultaneously ensuring that artificial intelligence adheres strictly to the relevant ethical norms and legal frameworks during the processing of medical data.
Artificial Intelligence/legislation & jurisprudence*
;
Humans
;
Consensus
;
Computer Security/standards*
;
Confidentiality/ethics*
;
Informed Consent/ethics*
8.Quantitative study of 3.0T MRI on the thickness of knee joint cartilage in healthy young people.
Yang LI ; Jin-Shuo TANG ; Zhong-Sheng ZHOU ; Chen-Yu WANG ; Ya-Chen PENG ; Jian-Lin ZUO
China Journal of Orthopaedics and Traumatology 2023;36(11):1065-1069
OBJECTIVE:
To explore 3.0T MRI accurate measurement of knee cartilage thickness in healthy youth provides reliable anatomical parameters for quantitative diagnosis of osteoarthritis and accurate osteotomy of joint replacement.
METHODS:
From January 2013 to December 2013, 30 healthy young volunteers including 14 males and 16 females with an average age of (25.8±2.4) years old ranging from 22 to 33 years were recruited in Changchun, Jilin Province, and a 3.0T MRI scan was performed on the bilateral knee joints of each volunteer. The cartilage thickness was measured on the lateral femoral condyle (LFC), medial femoral condyle (MFC), lateral tibial plateau (LTP) and medial tibial plateau (MTP).
RESULTS:
In four regions of the knee joint:LFC, MFC, LTP and MTP, whether young men or women, there was no significant difference in cartilage thickness between the left and right knee joints (P>0.05). There were significant differences in knee cartilage thickness between healthy young men and women (P<0.05). In the same sex group, LFC cartilage thickness was thinner in the middle, thicker in front and rear;MFC cartilage thickness was the thinnest in front and gradually thickening from the front to the rear; LTP cartilage thickness was thickest in the middle, second in the rear and thinnest in the front;MTP cartilage thickness was the thinnest in the front, was relatively uniform in the middle and rear and thicker than that in the front.
CONCLUSION
In Northeast China, among healthy adults aged 22 to 33, gender difference may be an important factor in the difference of cartilage thickness in various regions of the knee joint. Regardless of whether male or female healthy young people, the cartilage thickness of the entire knee joint is unevenly distributed, but there is no significant difference in cartilage thickness in the same area between the left and right knee joints.
Adult
;
Adolescent
;
Humans
;
Male
;
Female
;
Young Adult
;
Cartilage, Articular/diagnostic imaging*
;
Knee Joint/surgery*
;
Osteoarthritis
;
Magnetic Resonance Imaging
;
Femur
9.Role and mechanisms of CHI3L1 in coronary artery lesions in a mouse model of Kawasaki disease-like vasculitis.
Yue CAO ; Shuai GAO ; Gang LUO ; Shui-Yan ZHAO ; Ya-Qi TANG ; Zhan-Hui DU ; Si-Lin PAN
Chinese Journal of Contemporary Pediatrics 2023;25(12):1227-1233
OBJECTIVES:
To explore the role and potential mechanisms of chitinase-3-like protein 1 (CHI3L1) in coronary artery lesions in a mouse model of Kawasaki disease (KD)-like vasculitis.
METHODS:
Four-week-old male SPF-grade C57BL/6 mice were randomly divided into a control group and a model group, with 10 mice in each group. The model group mice were intraperitoneally injected with 0.5 mL of lactobacillus casei cell wall extract (LCWE) to establish a mouse model of KD-like vasculitis, while the control group mice were injected with an equal volume of normal saline. The general conditions of the mice were observed on the 3rd, 7th, and 14th day after injection. Changes in coronary artery tissue pathology were observed using hematoxylin-eosin staining. The level of CHI3L1 in mouse serum was measured by enzyme-linked immunosorbent assay. Immunofluorescence staining was used to detect the expression and localization of CHI3L1, von Willebrand factor (vWF), and α-smooth muscle actin (α-SMA) in coronary artery tissue. Western blot analysis was used to detect the expression of CHI3L1, vWF, vascular endothelial cadherin (VE cadherin), Caspase-3, B cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), nuclear factor κB (NF-κB), and phosphorylated NF-κB (p-NF-κB) in coronary artery tissue.
RESULTS:
The serum level of CHI3L1 in the model group was significantly higher than that in the control group (P<0.05). Compared to the control group, the expression of CHI3L1 in the coronary artery tissue was higher, while the expression of vWF was lower in the model group. The relative expression levels of CHI3L1, Bax, Caspase-3, NF-κB, and p-NF-κB were significantly higher in the model group than in the control group (P<0.05). The relative expression levels of vWF, VE cadherin, and Bcl-2 were lower in the model group than in the control group (P<0.05).
CONCLUSIONS
In the LCWE-induced mouse model of KD-like vasculitis, the expression levels of CHI3L1 in serum and coronary arteries increase, and it may play a role in coronary artery lesions through endothelial cell apoptosis mediated by inflammatory reactions.
Male
;
Animals
;
Mice
;
Mucocutaneous Lymph Node Syndrome/pathology*
;
Coronary Vessels/pathology*
;
NF-kappa B
;
Caspase 3/metabolism*
;
bcl-2-Associated X Protein/metabolism*
;
Chitinase-3-Like Protein 1
;
von Willebrand Factor/metabolism*
;
Mice, Inbred C57BL
;
Cadherins

Result Analysis
Print
Save
E-mail