1.The Role and Mechanism of Circadian Rhythm Regulation in Skin Tissue Regeneration
Ya-Qi ZHAO ; Lin-Lin ZHANG ; Xiao-Meng MA ; Zhen-Kai JIN ; Kun LI ; Min WANG
Progress in Biochemistry and Biophysics 2025;52(5):1165-1178
Circadian rhythm is an endogenous biological clock mechanism that enables organisms to adapt to the earth’s alternation of day and night. It plays a fundamental role in regulating physiological functions and behavioral patterns, such as sleep, feeding, hormone levels and body temperature. By aligning these processes with environmental changes, circadian rhythm plays a pivotal role in maintaining homeostasis and promoting optimal health. However, modern lifestyles, characterized by irregular work schedules and pervasive exposure to artificial light, have disrupted these rhythms for many individuals. Such disruptions have been linked to a variety of health problems, including sleep disorders, metabolic syndromes, cardiovascular diseases, and immune dysfunction, underscoring the critical role of circadian rhythm in human health. Among the numerous systems influenced by circadian rhythm, the skin—a multifunctional organ and the largest by surface area—is particularly noteworthy. As the body’s first line of defense against environmental insults such as UV radiation, pollutants, and pathogens, the skin is highly affected by changes in circadian rhythm. Circadian rhythm regulates multiple skin-related processes, including cyclic changes in cell proliferation, differentiation, and apoptosis, as well as DNA repair mechanisms and antioxidant defenses. For instance, studies have shown that keratinocyte proliferation peaks during the night, coinciding with reduced environmental stress, while DNA repair mechanisms are most active during the day to counteract UV-induced damage. This temporal coordination highlights the critical role of circadian rhythms in preserving skin integrity and function. Beyond maintaining homeostasis, circadian rhythm is also pivotal in the skin’s repair and regeneration processes following injury. Skin regeneration is a complex, multi-stage process involving hemostasis, inflammation, proliferation, and remodeling, all of which are influenced by circadian regulation. Key cellular activities, such as fibroblast migration, keratinocyte activation, and extracellular matrix remodeling, are modulated by the circadian clock, ensuring that repair processes occur with optimal efficiency. Additionally, circadian rhythm regulates the secretion of cytokines and growth factors, which are critical for coordinating cellular communication and orchestrating tissue regeneration. Disruptions to these rhythms can impair the repair process, leading to delayed wound healing, increased scarring, or chronic inflammatory conditions. The aim of this review is to synthesize recent information on the interactions between circadian rhythms and skin physiology, with a particular focus on skin tissue repair and regeneration. Molecular mechanisms of circadian regulation in skin cells, including the role of core clock genes such as Clock, Bmal1, Per and Cry. These genes control the expression of downstream effectors involved in cell cycle regulation, DNA repair, oxidative stress response and inflammatory pathways. By understanding how these mechanisms operate in healthy and diseased states, we can discover new insights into the temporal dynamics of skin regeneration. In addition, by exploring the therapeutic potential of circadian biology in enhancing skin repair and regeneration, strategies such as topical medications that can be applied in a time-limited manner, phototherapy that is synchronized with circadian rhythms, and pharmacological modulation of clock genes are expected to optimize clinical outcomes. Interventions based on the skin’s natural rhythms can provide a personalized and efficient approach to promote skin regeneration and recovery. This review not only introduces the important role of circadian rhythms in skin biology, but also provides a new idea for future innovative therapies and regenerative medicine based on circadian rhythms.
2.Synergistic neuroprotective effects of main components of salvianolic acids for injection based on key pathological modules of cerebral ischemia.
Si-Yu TAN ; Ya-Xu WU ; Zi-Shu YAN ; Ai-Chun JU ; De-Kun LI ; Peng-Wei ZHUANG ; Yan-Jun ZHANG ; Hong GUO
China Journal of Chinese Materia Medica 2025;50(3):693-701
This study aims to explore the synergistic effects of the main components in salvianolic acids for Injection(SAFI) on key pathological events in cerebral ischemia, elucidating the pharmacological characteristics of SAFI in neuroprotection. Two major pathological gene modules related to endothelial injury and neuroinflammation in cerebral ischemia were mined from single-cell data. According to the topological distance calculated in network medicine, potential synergistic component combinations of SAFI were screened out. The results showed that the combination of caffeic acid and salvianolic acid B scored the highest in addressing both endothelial injury and neuroinflammation, demonstrating potential synergistic effects. The cell experiments confirmed that the combination of these two components at a ratio of 1∶1 significantly protected brain microvascular endothelial cells(bEnd.3) from oxygen-glucose deprivation/reoxygenation(OGD/R)-induced reperfusion injury and effectively suppressed lipopolysaccharide(LPS)-induced neuroinflammatory responses in microglial cells(BV-2). This study provides a new method for uncovering synergistic effects among active components in traditional Chinese medicine(TCM) and offers novel insights into the multi-component, multi-target acting mechanisms of TCM.
Brain Ischemia/metabolism*
;
Neuroprotective Agents/pharmacology*
;
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Benzofurans/pharmacology*
;
Mice
;
Drug Synergism
;
Caffeic Acids/pharmacology*
;
Polyphenols/pharmacology*
;
Humans
;
Alkenes/pharmacology*
;
Endothelial Cells/drug effects*
;
Depsides
3.Quality changes of volatile oil and chlorogenic acid compounds during extraction process of Artemisiae Argyi Folium: process analysis based on chemical composition, physicochemical properties, and biological activity.
Dan-Dan YANG ; Hao-Zhou HUANG ; Xin-Ming CHEN ; Lin HUANG ; Ya-Nan HE ; Zhen-Feng WU ; Xiao-Ming BAO ; Ding-Kun ZHANG ; Ming YANG
China Journal of Chinese Materia Medica 2025;50(11):3001-3012
To explore the variation laws of volatile oil during the extraction process of Artemisiae Argyi Folium and its impact on the quality of the medicinal solution, as well as to achieve precise control of the extraction process, this study employed headspace solid phase microextraction gas chromatography-mass spectrometry(HS-SPME-GC-MS) in combination with multiple light scattering techniques to conduct a comprehensive analysis, identification, and characterization of the changes in volatile components and the physical properties of the medicinal solution during the extraction process. A total of 82 volatile compounds were identified using the HS-SPME-GC-MS technique, including 21 alcohols, 15 alkenes, 14 ketones, 9 acids, 6 aldehydes, 5 phenols, 3 esters, and 9 other types of compounds. At different extraction time points(15, 30, 45, and 60 min), 71, 72, 64, and 44 compounds were identified in the medicinal solution, respectively. It was observed that the content of volatile components gradually decreased with the extension of extraction time. Through multivariate statistical analysis, four compounds with significant differences during different extraction time intervals were identified, namely 1,8-cineole, terpinen-4-ol, 3-octanone, and camphor. RESULTS:: from multiple light scattering techniques indicated that at 15 minutes of extraction, the transmittance of the medicinal solution was the lowest(25%), the particle size was the largest(0.325-0.350 nm), and the stability index(turbiscan stability index, TSI) was the highest(0-2.5). With the extension of extraction time, the light transmittance of the medicinal solution improved, stability was enhanced, and the particle size decreased. These laws of physicochemical property changes provide important basis for the control of Artemisiae Argyi Folium extraction process. In addition, the changes in the bioactivity of Artemisiae Argyi Folium extracts during the extraction process were investigated through mouse writhing tests and antimicrobial assays. The results indicated that the analgesic and antimicrobial effects of the medicinal solution were strongest at the 15-minute extracting point. In summary, the findings of this study demonstrate that the content of volatile oil in Artemisiae Argyi Folium extracts gradually decreases with the extension of extraction time, and the variation in volatile oil content directly influences the physicochemical properties and pharmacological efficacy of the medicinal solution. This discovery provides important scientific reference for the optimization of Artemisiae Argyi Folium extraction processes and the development and application of process analytical technologies.
Oils, Volatile/pharmacology*
;
Artemisia/chemistry*
;
Gas Chromatography-Mass Spectrometry
;
Drugs, Chinese Herbal/pharmacology*
;
Chlorogenic Acid/pharmacology*
;
Solid Phase Microextraction
;
Quality Control
4.Application of Assessment Scales in Palliative Care for Glioma: A Systematic Review.
Zhi-Yuan XIAO ; Tian-Rui YANG ; Ya-Ning CAO ; Wen-Lin CHEN ; Jun-Lin LI ; Ting-Yu LIANG ; Ya-Ning WANG ; Yue-Kun WANG ; Xiao-Peng GUO ; Yi ZHANG ; Yu WANG ; Xiao-Hong NING ; Wen-Bin MA
Chinese Medical Sciences Journal 2025;40(3):211-218
BACKGROUND AND OBJECTIVE: Patients with glioma experience a high symptom burden and have diverse palliative care needs. However, the assessment scales used in palliative care remain non-standardized and highly heterogeneous. To evaluate the application patterns of the current scales used in palliative care for glioma, we aim to identify gaps and assess the need for disease-specific scales in glioma palliative care. METHODS: We conducted a systematic search of five databases including PubMed, Web of Science, Medline, EMBASE, and CINAHL for quantitative studies that reported scale-based assessments in glioma palliative care. We extracted data on scale characteristics, domains, frequency, and psychometric properties. Quality assessments were performed using the Cochrane ROB 2.0 and ROBINS-I tools. RESULTS: Of the 3,405 records initially identified, 72 studies were included. These studies contained 75 distinct scales that were used 193 times. Mood (21.7%), quality of life (24.4%), and supportive care needs (5.2%) assessments were the most frequently assessed items, exceeding half of all scale applications. Among the various assessment dimensions, the Distress Thermometer (DT) was the most frequently used tool for assessing mood, while the Short Form-36 Health Survey Questionnaire (SF-36) was the most frequently used tool for assessing quality of life. The Mini Mental Status Examination (MMSE) was the most common tool for cognitive assessment. Performance status (5.2%) and social support (6.8%) were underrepresented. Only three brain tumor-specific scales were identified. Caregiver-focused scales were limited and predominantly burden-oriented. CONCLUSIONS: There are significant heterogeneity, domain imbalances, and validation gaps in the current use of assessment scales for patients with glioma receiving palliative care. The scale selected for use should be comprehensive and user-friendly.
Humans
;
Glioma/psychology*
;
Palliative Care/methods*
;
Quality of Life
;
Psychometrics
;
Brain Neoplasms/psychology*
5.Protocol for development of Guideline for Interventions on Cervical Spine Health.
Jing LI ; Guang-Qi LU ; Ming-Hui ZHUANG ; Xin-Yue SUN ; Ya-Kun LIU ; Ming-Ming MA ; Li-Guo ZHU ; Zhong-Shi LI ; Wei CHEN ; Ji-Ge DONG ; Le-Wei ZHANG ; Jie YU
China Journal of Orthopaedics and Traumatology 2025;38(10):1083-1088
Cervical spine health issues not only seriously affect patients' quality of life but also impose a heavy burden on the social healthcare system. Existing guidelines lack sufficient clinical guidance on lifestyle and work habits, such as exercise, posture, daily routine, and diet, making it difficult to meet practical needs. To address this, relying on the China Association of Chinese Medicine, Wangjing Hospital of China Academy of Chinese Medical Sciences took the lead and joined hands with more than ten institutions to form a multidisciplinary guideline development group. For the first time, the group developed the Guidelines for Cervical Spine Health Intervention based on evidence-based medicine methods, strictly following the standardized procedures outlined in the World Health Organization Handbook for Guideline Development and the Guiding Principles for the Formulation/Revision of Clinical Practice Guidelines in China (2022 Edition). This proposal systematically explains the methods and steps for developing the guideline, aiming to make the guideline development process scientific, standardized, and transparent.
Humans
;
Practice Guidelines as Topic/standards*
;
Cervical Vertebrae
;
China
6.Study of Hedysarum polybotrys polysacchcaide regulating FXR-SHP pathway to improve glucose and lipid metabolism in liver tissue of diabetes rats
Lei ZHANG ; Sheng-Fang WAN ; Ya-Ling LI ; Qian-Kun LIANG ; Yi-Hong TIAN ; Xin-Xin MA ; Qian GUO
The Chinese Journal of Clinical Pharmacology 2024;40(17):2538-2542
Objective To investigate the effects of Astragalus polysaccharides(HPS)on farnitol X receptor(FXR)-small heterodimer chaperone receptor(SHP)signaling pathway and key proteins of glucose and lipid metabolism in diabetic rats.Methods Twelve male Wistar rats were randomly selected as blank group,and the remaining 60 rats were fed with a one-time intrabitoneal injection of streptozotocin(STZ,50 mg·kg-1)combined with a high-sugar and high-fat diet to replicate the diabetic rat model.The model rats were randomly divided into model group,positive control group(400 mg·kg-1·d-1 Bifidobacterium quadruple viable bacterial tablet suspension),experimental-H,-M,-L groups(200,100 and 50 mg·kg-1·d-1 HPS suspension),respectively.Blank group and model group were given equal volume of pure water once a day for 8 weeks.Blood glucose(Glu)was measured before and after gavage.Real-time fluorescent polymerase chain reaction(RT-PCR),Western blot were used to detect the mRNA and protein expression level of FXR,SHP,antiperoxisomal proliferator-activated receptor α(PPARα),antiphosphoenolpyruvate carboxylkinase(PEPCK),sterol regulatory receptor binding protein-1c(SREBP-1c),glucose 6 phosphatase(G6Pase).Results Glu levels in normal group,model group,positive control group and experimental-H group after treatment were(7.66±0.61),(29.25±1.64),(23.31±3.02),(19.31±5.13)mmol·L-1,respectively;the relative expression levels of FXR mRNA in liver tissues were 1.00±0.04,0.44±0.03,0.61±0.06,0.87±0.03,respectively;the relative expression levels of SHP mRNA were 1.00±0.04,0.40±0.01,0.67±0.01,0.67±0.02;the relative expression levels of G6Pase mRNA in liver tissues were 1.00±0.06,3.00±0.08,1.87±0.03,1.44±0.05,respectively;the relative expression levels of PEPCK mRNA in liver tissues were 1.00±0.04,1.88±0.03,1.31±0.02,1.23±0.04,respectively;the relative expression levels of SREBP-1c mRNA in liver tissues were 1.00±0.04,1.90±0.01,1.26±0.03,1.06±0.04;the relative expression levels of PPARα mRNA in liver tissues were 1.00±0.02,0.16±0.01,0.45±0.01,0.96±0.03,respectively.Compared with blank group,positive control group and experimental-H group,there were statistically significant differences in the above indexes between model group and blank group(all P<0.01).The protein expression trend of FXR,SHP,G6Pase,PEPCK,SREBP-1c,PPARα was consistent with mRNA expression.Conclusion HPS may regulate FXR-SHP signaling pathway in liver tissue,inhibit the expression of key proteins of glucose and lipid metabolism,promote lipid oxidation,improve Glu and protect liver tissue in diabetic rats.
7.Research progress of lysine specific demethylase 1(LSD1)inhibitors
Xiaomeng ZHANG ; Jinyang FU ; Yanan HE ; Jianhong GONG ; Kun DU ; Ya WU ; Yanle ZHI
Journal of China Pharmaceutical University 2024;55(5):685-696
Lysine specific demethylase1(LSD1)is a flavin adenine dinucleotide(FAD)-dependent monoamine oxidase.Studies have confirmed that aberrant expression of LSD1 is closely related to tumor metastasis and proliferation,and is currently one of the important targets for tumor-targeted therapy.In addition,LSD1 is involved in the development of various conditions such as neurodegenerative diseases,cardiovascular diseases,and inflammatory responses.Currently,several inhibitors have been developed for the clinical research stage.In this paper,the structure and mechanism of action of LSD1 and the research progress of LSD1 inhibitors are briefly introduced to provide some reference for the design and development of novel LSD1 inhibitors.
8.Effects of Electroacupuncture on Urodynamics and Expression of ERK/CREB/Bcl-2 Pathway in Spinal Cord of Rats with Neurogenic Bladder after Suprasacral Spinal Cord Injury
Ming XU ; Kun AI ; Yue ZHUO ; Qiong LIU ; Xiaomeng LIU ; Ya LI ; Xiaoyuan LUO ; Hong ZHANG
Chinese Journal of Information on Traditional Chinese Medicine 2024;31(4):100-105
Objective To observe the effects of electroacupuncture at"Ciliao","Zhongji","Sanyinjiao"and"Dazhui"on urodynamics and expression of ERK/CREB/Bcl-2 pathway in spinal cord tissue of neurogenic bladder rats after suprasacral spinal cord injury.Methods Sixty female SD rats randomly selected 24 and divided into blank group and sham-operation group(12 rats in each group),the remaining 36 rats were subjected to surgical modeling.After modeling,rats were randomly divided into the model group and the electroacupuncture group,with 12 rats in each group.The electroacupuncture group received unilateral electroacupuncture stimulation at acupoints"Ciliao","Zhongji","Sanyinjiao",and"Dazhui"for 30 minutes each time,once a day,for 7 consecutive days.After administration,urodynamic testing was performed,HE staining was used to observe the morphology of bladder detrusor tissue,TUNEL method was used to detected apoptosis in spinal cord tissue,Western blot was used to detected expressions of p-ERK1/2,p-CREB,p-p90Rsk,CRE,Bcl-2,and Bax proteins in spinal cord tissue.Results Compared with the sham-operation group,the basal pressure,maximum pressure,and leakage point pressure of the bladder in the model group increased significantly(P<0.01),while the maximum capacity and compliance of the bladder decreased significantly(P<0.01);the structure of bladder smooth muscle cells was severely damaged and disorderly arranged,accompanied by a large amount of inflammatory cell infiltration;the apoptosis rate of spinal cord tissue cells significantly increased(P<0.01),and the expressions of p-ERK1/2,p-p90Rsk,p-CREB,CRE,and Bcl-2 proteins in spinal cord tissue were significantly decreased,while the expression of Bax protein significantly increased(P<0.01).Compared with the model group,the basal pressure,maximum pressure,and leakage point pressure of the bladder in the electroacupuncture group decreased significantly(P<0.05),while the maximum capacity and compliance of the bladder increased significantly(P<0.05,P<0.01);the integrity of bladder smooth muscle cells was enhanced,the degree of cell edema was reduced,and inflammatory cell infiltration was reduced;the apoptosis rate of spinal cord tissue cells was significantly reduced(P<0.05),and the expressions of p-ERK1/2,p-p90Rsk,p-CREB,CRE,and Bcl-2 proteins in spinal cord tissue significantly increased,while the expression of Bax protein was significantly decreased(P<0.05,P<0.01).Conclusion Electroacupuncture can promote the repair of bladder detrusor tissue in rats with neurogenic bladder model after suprasacral spinal cord injury,increase the maximum capacity and compliance of the bladder,alleviate the high pressure state in the bladder,and its mechanism is related to activating the ERK/CREB/Bcl-2 pathway,reducing secondary apoptosis of damaged neurons,effectively improving bladder innervation,and protecting bladder function.
9.Study on the potential allergen and mechanism of pseudo-allergic reactions induced by combined using of Reduning injection and penicillin G injection based on metabolomics and bioinformatics
Yu-long CHEN ; You ZHAI ; Xiao-yan WANG ; Wei-xia LI ; Hui ZHANG ; Ya-li WU ; Liu-qing YANG ; Xiao-fei CHEN ; Shu-qi ZHANG ; Lu NIU ; Ke-ran FENG ; Kun LI ; Jin-fa TANG ; Ming-liang ZHANG
Acta Pharmaceutica Sinica 2024;59(2):382-394
Based on the strategy of metabolomics combined with bioinformatics, this study analyzed the potential allergens and mechanism of pseudo-allergic reactions (PARs) induced by the combined use of Reduning injection and penicillin G injection. All animal experiments and welfare are in accordance with the requirements of the First Affiliated Experimental Animal Ethics and Animal Welfare Committee of Henan University of Chinese Medicine (approval number: YFYDW2020002). Based on UPLC-Q-TOF/MS technology combined with UNIFI software, a total of 21 compounds were identified in Reduning and penicillin G mixed injection. Based on molecular docking technology, 10 potential allergens with strong binding activity to MrgprX2 agonist sites were further screened. Metabolomics analysis using UPLC-Q-TOF/MS technology revealed that 34 differential metabolites such as arachidonic acid, phosphatidylcholine, phosphatidylserine, prostaglandins, and leukotrienes were endogenous differential metabolites of PARs caused by combined use of Reduning injection and penicillin G injection. Through the analysis of the "potential allergen-target-endogenous differential metabolite" interaction network, the chlorogenic acids (such as chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid, and isochlorogenic acid A) and
10.Three 2,3-diketoquinoxaline alkaloids with hepatoprotective activity from Heterosmilax yunnanensis
Rong-rong DU ; Xin-yi GUO ; Wen-jie QIN ; Hua SUN ; Xiu-mei DUAN ; Xiang YUAN ; Ya-nan YANG ; Kun LI ; Pei-cheng ZHANG
Acta Pharmaceutica Sinica 2024;59(2):413-417
Three 2,3-diketoquinoxaline alkaloids were isolated from

Result Analysis
Print
Save
E-mail