1.Inhibitory Effects of the Slit Guidance Ligand 1-3’ Untranslated Region on the Fibrotic Phenotype of Cardiac Fibroblasts
Ya WANG ; Huayan WU ; Yuan GAO ; Rushi WU ; Peiying GUAN ; Hui LI ; Juntao FANG ; Zhixin SHAN
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(3):466-474
ObjectiveTo study the regulatory effect of the partial sequence within the 3’ untranslated region (3’UTR) of slit guidance ligand 1 (Slit1) (Slit1-3’UTR) on the fibrotic phenotypes of cardiac fibroblasts (CFs) and its potential mechanism. MethodsThe adenovirus vector was used to overexpress the 1526nt sequence of Slit1-3’UTR in ICR neonatal mouse CFs (mCFs). The expression of fibrosis-related genes in mCFs, such as collagen type 1 alpha1(COL1A1), collagen type 3 alpha3 (COL3A1) and alpha smooth muscle actin (α-SMA) were detected by Western blot assay. The effect of Slit1-3’UTR 1526nt on the proliferation and migration of mCFs was assessed by EdU staining and Trans-well assays. Angiotensin Ⅱ (Ang Ⅱ) was used to treat mCFs, and the impact of Slit1-3’UTR 1526nt on the fibrotic phenotypes of Ang Ⅱ-induced mCFs was evaluated. After overexpression of Slit1-3’UTR 1526nt, miR-34a-5p mimic was transfected into mCFs, followed by actinomycin D treatment to detect the mRNA stability of Slit1-3’UTR 1526nt, and the levels of miR-34a-5p and its target gene SIRT1(si-SIRT1) in mCFs were determined. The effects of miR-34a-5p and small interfering RNA targeting SIRT1 on the Slit1-3’UTR 1526nt-mediated regulation of fibrotic phenotypes were also determined. ResultsAdenovirus-mediated overexpression of Slit 1-3’UTR 1526nt was achieved in mCFs. Overexpression of Slit 1-3’UTR 1526nt markedly inhibited the expression of the fibrosis-related genes, proliferation and migration of mCFs and fibrotic phenotypes of Ang Ⅱ. The results of actinomycin D assay showed that miR-34a-5p inhibited the stability of Slit1-3’UTR 1526nt in mCFs, while the level of miR-34a-5p was reduced in mCFs with overexpression of Slit1-3’UTR 1526nt. Transfection of miR-34a-5p promoted the fibrotic phenotypes, and reversed the inhibitory effect of Slit1-3’UTR 1526nt on the fibrotic phenotypes of mCFs. Overexpression of Slit1-3’UTR 1526nt significantly increased the level of miR-34a-5p target gene SIRT1 in mCFs. Transfection of miR-34a-5p and si-SIRT1 consistently reversed the inhibitory effects of Slit1-3’UTR 1526nt on the fibrotic phenotypes of mCFs. ConclusionSlit1-3’UTR1526nt inhibits the fibrotic phenotypes of mCFs by binding to miR-34a-5p and increasing the expression of its target gene of SIRT1.
2.Cinobufacini Inhibits Survival and Metastasis of Hepatocellular Carcinoma via c-Met Signaling Pathway.
Ya-Nan MA ; Xue-Mei JIANG ; Xi-Qi HU ; Ling WANG ; Jian-Jun GAO ; Hui LIU ; Fang-Hua QI ; Pei-Pei SONG ; Wei TANG
Chinese journal of integrative medicine 2025;31(4):311-325
OBJECTIVE:
To investigate the anti-tumor effects of cinobufacini (CINO) on hepatocellular carcinoma (HCC) induced by des-gamma-carboxy-prothrombin (DCP) and to uncover the underlying mechanisms.
METHODS:
The inhibitory effect of CINO on HCC cell proliferation was evaluated using the cell counting kit-8 method, and the apoptosis rate was quantified using flow cytometry. Immunofluorescence and Western blot analyses were used to investigate the differential expression of proteins associated with cell growth, apoptosis, migration, and invasion pathways after CINO treatment. The therapeutic potential of CINO for HCC was confirmed, and the possibility of combining cinobufacini with c-Met inhibitor for the treatment of primary HCC was further validated by in vivo experiments.
RESULTS:
Under the induction of DCP, CINO inhibited the activity of HCC cells, induced apoptosis, and inhibited migration and invasion. Upon the induction of DCP, CINO regulated c-Met activation and the activation of the phosphatidylinositol-3 kinase/protein kinase B (PI3K/AKT) and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) pathways. In a mouse model of HCC, CINO exhibited significant antitumor effects by inhibiting the phosphorylation of c-Met and the downstream PI3K/AKT and MEK/ERK pathways in tumor tissues.
CONCLUSIONS
CINO inhibited HCC cell growth, promoted apoptosis, and suppressed HCC cell invasion and migration by targeting c-Met and PI3K/AKT and MEK/ERK signaling pathways under DCP induction.
Carcinoma, Hepatocellular/drug therapy*
;
Proto-Oncogene Proteins c-met/metabolism*
;
Liver Neoplasms/drug therapy*
;
Signal Transduction/drug effects*
;
Animals
;
Humans
;
Cell Movement/drug effects*
;
Apoptosis/drug effects*
;
Cell Proliferation/drug effects*
;
Amphibian Venoms/therapeutic use*
;
Cell Line, Tumor
;
Neoplasm Metastasis
;
Cell Survival/drug effects*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Neoplasm Invasiveness
;
Mice, Inbred BALB C
;
Mice, Nude
;
Mice
;
Male
;
Bufanolides/therapeutic use*
;
Protein Precursors
;
Prothrombin
;
Biomarkers
3.A machine learning model for predicting abnormal liver function induced by a Chinese herbal medicine preparation (Zhengqing Fengtongning) in patients with rheumatoid arthritis based on real-world study.
Ze YU ; Fang KOU ; Ya GAO ; Fei GAO ; Chun-Ming LYU ; Hai WEI
Journal of Integrative Medicine 2025;23(1):25-35
OBJECTIVE:
Rheumatoid arthritis (RA) is a systemic autoimmune disease that affects the small joints of the whole body and degrades the patients' quality of life. Zhengqing Fengtongning (ZF) is a traditional Chinese medicine preparation used to treat RA. ZF may cause liver injury. In this study, we aimed to develop a prediction model for abnormal liver function caused by ZF.
METHODS:
This retrospective study collected data from multiple centers from January 2018 to April 2023. Abnormal liver function was set as the target variable according to the alanine transaminase (ALT) level. Features were screened through univariate analysis and sequential forward selection for modeling. Ten machine learning and deep learning models were compared to find the model that most effectively predicted liver function from the available data.
RESULTS:
This study included 1,913 eligible patients. The LightGBM model exhibited the best performance (accuracy = 0.96) out of the 10 learning models. The predictive metrics of the LightGBM model were as follows: precision = 0.99, recall rate = 0.97, F1_score = 0.98, area under the curve (AUC) = 0.98, sensitivity = 0.97 and specificity = 0.85 for predicting ALT < 40 U/L; precision = 0.60, recall rate = 0.83, F1_score = 0.70, AUC = 0.98, sensitivity = 0.83 and specificity = 0.97 for predicting 40 ≤ ALT < 80 U/L; and precision = 0.83, recall rate = 0.63, F1_score = 0.71, AUC = 0.97, sensitivity = 0.63 and specificity = 1.00 for predicting ALT ≥ 80 U/L. ZF-induced abnormal liver function was found to be associated with high total cholesterol and triglyceride levels, the combination of TNF-α inhibitors, JAK inhibitors, methotrexate + nonsteroidal anti-inflammatory drugs, leflunomide, smoking, older age, and females in middle-age (45-65 years old).
CONCLUSION
This study developed a model for predicting ZF-induced abnormal liver function, which may help improve the safety of integrated administration of ZF and Western medicine. Please cite this article as: Yu Z, Kou F, Gao Y, Lyu CM, Gao F, Wei H. A machine learning model for predicting abnormal liver function induced by a Chinese herbal medicine preparation (Zhengqing Fengtongning) in patients with rheumatoid arthritis based on real-world study. J Integr Med. 2025; 23(1): 25-35.
Humans
;
Arthritis, Rheumatoid/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Female
;
Middle Aged
;
Male
;
Retrospective Studies
;
Machine Learning
;
Adult
;
Aged
;
Liver/physiopathology*
;
Alanine Transaminase/blood*
4.Aloin blocks the malignant behavior of lung squamous cell carcinoma cells and M2 macrophage polarization by modulating the NR3C2/MT1M axis.
Ying-Na CHEN ; Jie-Ya LU ; Cheng-Feng GAO ; Zhi-Ruo FANG ; Yan ZHOU
Journal of Integrative Medicine 2025;23(2):195-208
OBJECTIVE:
Aloin, the main active component in Aloe vera (L.) Burm. f., has shown promising anti-tumor effects. This study investigated the impact of aloin in lung squamous cell carcinoma (LUSC) and explored its functional mechanism.
METHODS:
We analyzed the viability, migration, invasion, proliferation, and apoptosis of two LUSC cell lines after treatment with aloin. Target molecules of aloin and downstream target transcripts of nuclear receptor subfamily 3 group C member 2 (NR3C2) were predicted by bioinformatics. The biological functions of NR3C2 and metallothionein 1 M (MT1M) in the malignant properties of LUSC cells were determined. A co-culture system of LUSC cells with monocyte-derived macrophages was constructed. Mouse xenograft tumor models were generated to analyze the functions of aloin and NR3C2 in the tumorigenic activity of LUSC cells and macrophage polarization in vivo.
RESULTS:
Aloin suppressed malignant properties of LUSC cells in vitro. However, these effects were negated by the silencing of NR3C2. NR3C2 was found to activate MT1M transcription by binding to its promoter. Additional upregulation of MT1M suppressed the malignant behavior of LUSC cells augmented by NR3C2 silencing. Analysis of the M1 and M2 markers/cytokines in the macrophages or the culture supernatant revealed that aloin treatment or MT1M overexpression in LUSC cells enhanced M1 polarization while suppressing M2 polarization of macrophages, whereas NR3C2 silencing led to reverse trends. Consistent findings were reproduced in vivo.
CONCLUSION
This study demonstrated that aloin activates the NR3C2/MT1M axis to suppress the malignant behavior of LUSC cells and M2 macrophage polarization. Please cite this article as: Chen YN, Lu JY, Gao CF, Fang ZR, Zhou Y. Aloin blocks the malignant behavior of lung squamous cell carcinoma cells and M2 macrophage polarization by modulating the NR3C2/MT1M axis. J Integr Med. 2025; 23(2): 195-208.
Lung Neoplasms/metabolism*
;
Humans
;
Animals
;
Cell Line, Tumor
;
Carcinoma, Squamous Cell/metabolism*
;
Mice
;
Macrophages/drug effects*
;
Emodin/analogs & derivatives*
;
Metallothionein/genetics*
;
Cell Proliferation/drug effects*
;
Cell Movement/drug effects*
;
Apoptosis/drug effects*
;
Receptors, Glucocorticoid/genetics*
5.Association of Body Mass Index with All-Cause Mortality and Cause-Specific Mortality in Rural China: 10-Year Follow-up of a Population-Based Multicenter Prospective Study.
Juan Juan HUANG ; Yuan Zhi DI ; Ling Yu SHEN ; Jian Guo LIANG ; Jiang DU ; Xue Fang CAO ; Wei Tao DUAN ; Ai Wei HE ; Jun LIANG ; Li Mei ZHU ; Zi Sen LIU ; Fang LIU ; Shu Min YANG ; Zu Hui XU ; Cheng CHEN ; Bin ZHANG ; Jiao Xia YAN ; Yan Chun LIANG ; Rong LIU ; Tao ZHU ; Hong Zhi LI ; Fei SHEN ; Bo Xuan FENG ; Yi Jun HE ; Zi Han LI ; Ya Qi ZHAO ; Tong Lei GUO ; Li Qiong BAI ; Wei LU ; Qi JIN ; Lei GAO ; He Nan XIN
Biomedical and Environmental Sciences 2025;38(10):1179-1193
OBJECTIVE:
This study aimed to explore the association between body mass index (BMI) and mortality based on the 10-year population-based multicenter prospective study.
METHODS:
A general population-based multicenter prospective study was conducted at four sites in rural China between 2013 and 2023. Multivariate Cox proportional hazards models and restricted cubic spline analyses were used to assess the association between BMI and mortality. Stratified analyses were performed based on the individual characteristics of the participants.
RESULTS:
Overall, 19,107 participants with a sum of 163,095 person-years were included and 1,910 participants died. The underweight (< 18.5 kg/m 2) presented an increase in all-cause mortality (adjusted hazards ratio [ aHR] = 2.00, 95% confidence interval [ CI]: 1.66-2.41), while overweight (≥ 24.0 to < 28.0 kg/m 2) and obesity (≥ 28.0 kg/m 2) presented a decrease with an aHR of 0.61 (95% CI: 0.52-0.73) and 0.51 (95% CI: 0.37-0.70), respectively. Overweight ( aHR = 0.76, 95% CI: 0.67-0.86) and mild obesity ( aHR = 0.72, 95% CI: 0.59-0.87) had a positive impact on mortality in people older than 60 years. All-cause mortality decreased rapidly until reaching a BMI of 25.7 kg/m 2 ( aHR = 0.95, 95% CI: 0.92-0.98) and increased slightly above that value, indicating a U-shaped association. The beneficial impact of being overweight on mortality was robust in most subgroups and sensitivity analyses.
CONCLUSION
This study provides additional evidence that overweight and mild obesity may be inversely related to the risk of death in individuals older than 60 years. Therefore, it is essential to consider age differences when formulating health and weight management strategies.
Humans
;
Body Mass Index
;
China/epidemiology*
;
Male
;
Female
;
Middle Aged
;
Prospective Studies
;
Rural Population/statistics & numerical data*
;
Aged
;
Follow-Up Studies
;
Adult
;
Mortality
;
Cause of Death
;
Obesity/mortality*
;
Overweight/mortality*
6.Effects of Different Sequential Enzymatic Cleavage of Trypsin and LysC on Proteomic Sample Preparation
Rui-Dong LI ; Min WANG ; Lu-Lu WANG ; Ming-Ya ZHANG ; Yuan GAO ; Min-Jia TAN ; Fang GUO ; Lin-Hui ZHAI
Chinese Journal of Biochemistry and Molecular Biology 2024;40(11):1618-1626
In mass spectrometry-based proteomics experiments,achieving high-throughput and efficientproteolytic digestion is crucial to ensure optimal protein cleavage and enhance the depth of protein identi-fication (including the number of identified proteins and the coverage of protein amino acid sequences) .Trypsin is the most widely used protease in mass spectrometry-based proteomics due to its ability to spe-cifically cleave the carboxyl terminus of arginine and lysine.However,it was found that Trypsin has some missed enzymatic efficiency for the cleavage of lysine residues.Therefore,in actual proteomics sample preparation,a combination of Trypsin and LysC will be used to ensure adequate cleavage of lysine resi-dues.Our study revealed that the commonly employed LysC-Trypsin tandem cleavage method exerts an impact on the enzymatic cleavage of protein samples by Trypsin due to the subsequent cleavage of Trypsin by initially added LysC.Consequently,we adjusted the order of LysC and Trypsin tandem digestion,with Trypsin cleavage being performed first followed by the addition of LysC to target any missed lysine resi-dues.We comprehensively compared and analyzed three distinct sequential digestion methods,namely Trypsin-Trypsin (T-T),LysC-Trypsin (L-T),and Trypsin-LysC (T-L),in terms of their effects on pro-tein sample preparation quality.The results demonstrated that the Trypsin-LysC sequential digestion ap-proach not only minimizes missed protein lysine/arginine cleavage sites without increasing experimental costs,at the same time yielding peptides with a moderate amino acid sequence length.The use of Tryp-sin-LysC digestion enhances the adsorption and separation of peptide samples in RP-HPLC,as well as improves the depth of protein detection and amino acid sequence coverage during tandem mass spectrome-try analysis.This research work offers a novel technical solution and serves as a valuable reference for proteome sample preparation.
7.Urine Metabolites Changes in Acute Myocardial Infarction Rats via Metabolomic Analysis
Nian-Nian CHEN ; Jiao-Fang YU ; Peng WU ; Li LUO ; Ya-Qin BAI ; Li-Kai WANG ; Xiao-Qian LI ; Zhan-Peng LI ; Cai-Rong GAO ; Xiang-Jie GUO
Journal of Forensic Medicine 2024;40(3):227-236
Objective To screen biomarkers for forensic identification of acute myocardial infarction (AMI) by non-targeted metabolomic studies on changes of urine metabolites in rats with AMI.Methods The rat models of the sham surgery group,AMI group and hyperlipidemia+acute myocardial infarction (HAMI) group were established.Ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) was used to analyze the changes of urine metabolic spectrometry in AMI rats.Principal compo-nent analysis,partial least squares-discriminant analysis,and orthogonal partial least squares-discriminant analysis were used to screen differential metabolites.The MetaboAnalyst database was used to analyze the metabolic pathway enrichment and access the predictive ability of differential metabolites.Results A total of 40 and 61 differential metabolites associated with AMI and HAMI were screened,respec-tively.Among them,22 metabolites were common in both rat models.These small metabolites were mainly concentrated in the niacin and nicotinamide metabolic pathways.Within the 95% confidence in-terval,the area under the curve (AUC) values of receiver operator characteristic curve for N8-acetyl-spermidine,3-methylhistamine,and thymine were greater than 0.95.Conclusion N8-acetylspermidine,3-methylhistamine,and thymine can be used as potential biomarkers for AMI diagnosis,and abnormal metabolism in niacin and nicotinamide may be the main causes of AMI.This study can provide reference for the mechanism and causes of AMI identification.
8.The crosstalk of Wnt/β-catenin signaling and p53 in acute kidney injury and chronic kidney disease
Wen-Hua MING ; Lin WEN ; Wen-Juan HU ; Rong-Fang QIAO ; Yang ZHOU ; Bo-Wei SU ; Ya-Nan BAO ; Ping GAO ; Zhi-Lin LUAN
Kidney Research and Clinical Practice 2024;43(6):724-738
Wnt/β-catenin is a signaling pathway associated with embryonic development, organ formation, cancer, and fibrosis. Its activation can repair kidney damage during acute kidney injury (AKI) and accelerate the occurrence of renal fibrosis after chronic kidney disease (CKD). Interestingly, p53 has also been found as a key modulator in AKI and CKD in recent years. Meantime, some studies have found crosstalk between Wnt/β-catenin signaling pathways and p53, but more evidence is required on whether they have synergistic effects in renal disease progression. This article reviews the role and therapeutic targets of Wnt/β-catenin and p53 in AKI and CKD and proposes for the first time that Wnt/β-catenin and p53 have a synergistic effect in the treatment of renal injury.
9.The crosstalk of Wnt/β-catenin signaling and p53 in acute kidney injury and chronic kidney disease
Wen-Hua MING ; Lin WEN ; Wen-Juan HU ; Rong-Fang QIAO ; Yang ZHOU ; Bo-Wei SU ; Ya-Nan BAO ; Ping GAO ; Zhi-Lin LUAN
Kidney Research and Clinical Practice 2024;43(6):724-738
Wnt/β-catenin is a signaling pathway associated with embryonic development, organ formation, cancer, and fibrosis. Its activation can repair kidney damage during acute kidney injury (AKI) and accelerate the occurrence of renal fibrosis after chronic kidney disease (CKD). Interestingly, p53 has also been found as a key modulator in AKI and CKD in recent years. Meantime, some studies have found crosstalk between Wnt/β-catenin signaling pathways and p53, but more evidence is required on whether they have synergistic effects in renal disease progression. This article reviews the role and therapeutic targets of Wnt/β-catenin and p53 in AKI and CKD and proposes for the first time that Wnt/β-catenin and p53 have a synergistic effect in the treatment of renal injury.
10.The crosstalk of Wnt/β-catenin signaling and p53 in acute kidney injury and chronic kidney disease
Wen-Hua MING ; Lin WEN ; Wen-Juan HU ; Rong-Fang QIAO ; Yang ZHOU ; Bo-Wei SU ; Ya-Nan BAO ; Ping GAO ; Zhi-Lin LUAN
Kidney Research and Clinical Practice 2024;43(6):724-738
Wnt/β-catenin is a signaling pathway associated with embryonic development, organ formation, cancer, and fibrosis. Its activation can repair kidney damage during acute kidney injury (AKI) and accelerate the occurrence of renal fibrosis after chronic kidney disease (CKD). Interestingly, p53 has also been found as a key modulator in AKI and CKD in recent years. Meantime, some studies have found crosstalk between Wnt/β-catenin signaling pathways and p53, but more evidence is required on whether they have synergistic effects in renal disease progression. This article reviews the role and therapeutic targets of Wnt/β-catenin and p53 in AKI and CKD and proposes for the first time that Wnt/β-catenin and p53 have a synergistic effect in the treatment of renal injury.

Result Analysis
Print
Save
E-mail