1.Application of Nanomaterials in The Prevention and Treatment of Radiation-induced Injury
Qing-Qing WANG ; Ya LIU ; Wei LIU ; Wei LONG
Progress in Biochemistry and Biophysics 2025;52(7):1728-1744
Radiation-induced injury is a key factor in determining the prognosis of patients undergoing radiotherapy, highlighting the significant clinical importance of developing drugs for radiation prevention and treatment. Especially in oncology, radiation-induced injury remains a pivotal determinant of therapeutic outcomes, because of its direct correlation with normal tissue damage during radiotherapy. Efforts to mitigate or treat such injury are thus paramount in enhancing the overall safety and efficacy of cancer treatment. Novel nanomedicines with prolonged systemic circulation, versatile drug-loading capacities, enhanced tissue retention, and stimuli responsiveness exhibit unique advantages in the treatment and prevention of radiation-induced diseases, as they can be designed based on the specific microenvironment of radiation-damaged tissues, which offers innovative solutions to address the limitations of conventional radioprotectors such as short half-life, poor tissue targeting, and systemic side effects. This review thus aims to provide an overview of recent advance in the design and application of nanomaterials for radiation prevention and treatment. Generally, ionizing radiation damages cells either by inducing DNA double-strand breaks or through the generation of reactive oxygen species (ROS). The resulting oxidative stress would disrupt the structural integrity of cell membranes, proteins, and nucleic acids, leading to apoptosis, chronic inflammation, and systemic effects across multiple systems, including hematopoietic system, gastrointestinal tract, skin, lungs, brain, and heart. Radiation protection strategies focus on scavenging ROS, stimulating cellular repair and regeneration, inducing tissue hypoxia, and inhibiting apoptotic pathways. Recent advances in nanomedicine have introduced novel approaches for targeted and efficient radiation protection and treatment. For radiation-induced hematopoietic injury, nanoparticles can been designed to promote red and white blood cell regeneration while reducing oxidative stress. To address radiation-induced gastrointestinal injuries, nanomaterials enable localized antioxidant delivery and extended intestinal retention, effectively relieving radiation enteritis by scavenging ROS and modulating gut microbiota. For radiation-induced skin injuries, self-assembling peptide hydrogels that mimic the extracellular matrix can serve as effective scaffolds for wound healing. These hydrogels exhibit excellent antioxidant properties, stimulating angiogenesis, and accelerating the recovery of radiation dermatitis. In cases of radiation-induced brain damage, nanoparticles were designed to cross the blood-brain barrier to rescue neuronal damage and protect cognitive function. This review provides an in-depth insight into the mechanisms underlying radiation-induced injuries and highlights how nanomaterial were construtced according to the specific injury. Therefore, nanotechnology endowers durgs with transformative potential for preventing and treating radiation-induced injuries. Despite significant progress in nanomedicine, there are still challenges in long-term biocompatibility, precise targeting of damaged tissues, and scalable manufacturing. In addition, an in-depth understanding of the interactions between nanomaterials and biological systems remains to be covered. Future efforts should focus on optimizing design strategies, enhancing clinical translatability, and ensuring long-term safety, ultimately improving patient outcomes. Besides, expanding research into other radiation-induced diseases, such as radiation-induced ophthalmic disorders and hepatic injuries, may diversify therapeutic options.
2.Medication rules and mechanisms of treating chronic renal failure by Jinling medical school based on data mining, network pharmacology, and experimental validation.
Jin-Long WANG ; Wei WU ; Yi-Gang WAN ; Qi-Jun FANG ; Yu WANG ; Ya-Jing LI ; Fee-Lan CHONG ; Sen-Lin MU ; Chu-Bo HUANG ; Huang HUANG
China Journal of Chinese Materia Medica 2025;50(6):1637-1649
This study aims to explore the medication rules and mechanisms of treating chronic renal failure(CRF) by Jinling medical school based on data mining, network pharmacology, and experimental validation systematically and deeply. Firstly, the study selected the papers published by the inherited clinicians in Jinling medical school in Chinese journals using the subject headings named "traditional Chinese medicine(TCM) + chronic renal failure", "TCM + chronic renal inefficiency", or "TCM + consumptive disease" in China National Knowledge Infrastructure, Wanfang, and VIP Chinese Science and Technology Periodical Database and screened TCM formulas for treating CRF according to inclusion and exclusion criteria. The study analyzed the frequency of use of single TCM and the four properties, five tastes, channel tropism, and efficacy of TCM used with high frequency and performed association rule and clustering analysis, respectively. As a result, a total of 215 TCM formulas and 235 different single TCM were screened, respectively. The TCM used with high frequency included Astragali Radix, Rhei Radix et Rhizoma, Salviae Miltiorrhizae Radix et Rhizoma, Poria, and Atractylodis Macrocephalae Rhizoma(top 5). The single TCM characterized by "cold properties, sweet flavor, and restoring spleen channel" and the TCM with the efficacy of tonifying deficiency had the highest frequency of use, respectively. Then, the TCM with the rules of "blood-activating and stasis-removing" and "diuretic and dampness-penetrating" appeared. In addition, the core combination of TCM [(Hexin Formula, HXF)] included "Astragali Radix, Rhei Radix et Rhizoma, Poria, Salviae Miltiorrhizae Radix, and Angelicae Sinensis Radix". The network pharmacology analysis showed that HXF had 91 active compounds and 250 corresponding protein targets including prostaglandin-endoperoxide synthase 2(PTGS2), PTGS1, sodium voltage-gated channel alpha subunit 5(SCN5A), cholinergic receptor muscarinic 1(CHRM1), and heat shock protein 90 alpha family class A member 1(HSP90AA1)(top 5). Gene Ontology(GO) function analysis revealed that the core targets of HXF predominantly affected biological processes, cellular components, and molecular functions such as positive regulation of transcription by ribonucleic acid polymerase Ⅱ and DNA template transcription, formation of cytosol, nucleus, and plasma membrane, and identical protein binding and enzyme binding. Kyoto Encyclopedia of Genes and Genomes(KEGG) analysis revealed that CRF-related genes were involved in a variety of signaling pathways and cellular metabolic pathways, primarily involving "phosphatidylinositol 3-kinase(PI3K)-protein kinase B(Akt) pathway" and "advanced glycation end products-receptor for advanced glycation end products". Molecular docking results showed that the active components in HXF such as isomucronulatol 7-O-glucoside, betulinic acid, sitosterol, and przewaquinone B might be crucial in the treatment of CRF. Finally, a modified rat model with renal failure induced by adenine was used, and the in vivo experimental confirmation was performed based on the above-mentioned predictions. The results verify that HXF can regulate mitochondrial autophagy in the kidneys and the PI3K-Akt-mammalian target of rapamycin(mTOR) signaling pathway activation at upstream, so as to alleviate renal tubulointerstitial fibrosis and then delay the progression of CRF.
Data Mining
;
Drugs, Chinese Herbal/chemistry*
;
Network Pharmacology
;
Humans
;
Kidney Failure, Chronic/metabolism*
;
Medicine, Chinese Traditional
;
China
3.Research progress on interactions between medicinal plants and microorganisms.
Er-Jun WANG ; Ya-Long ZHANG ; Xiao-Hui MA ; Hua-Qian GONG ; Shao-Yang XI ; Gao-Sen ZHANG ; Ling JIN
China Journal of Chinese Materia Medica 2025;50(12):3267-3280
The interactions between microorganisms and medicinal plants are crucial to the quality improvement of medicinal plants. Medicinal plants attract microorganisms to colonize by secreting specific compounds and provide niche and nutrient support for these microorganisms, with a symbiotic network formed. These microorganisms grow in the rhizosphere, phyllosphere, and endophytic tissues of plants and significantly improve the growth performance and medicinal component accumulation of medicinal plants by promoting nutrient uptake, enhancing disease resistance, and regulating the synthesis of secondary metabolites. Microorganisms are also widely used in the ecological planting of medicinal plants, and the growth conditions of medicinal plants are optimized by simulating the microbial effects in the natural environment. The interactions between microorganisms and medicinal plants not only significantly improve the yield and quality of medicinal plants but also enhance their geoherbalism, which is in line with the concept of green agriculture and eco-friendly development. This study reviewed the research results on the interactions between medicinal plants and microorganisms in recent years and focused on the analysis of the great potential of microorganisms in optimizing the growth environment of medicinal plants, regulating the accumulation of secondary metabolites, inducing systemic resistance, and promoting the ecological planting of medicinal plants. It provides a scientific basis for the research on the interactions between medicinal plants and microorganisms, the research and development of microbial agents, and the application of microorganisms in the ecological planting of medicinal plants and is of great significance for the quality improvement of medicinal plants and the green and sustainable development of TCM resources.
Plants, Medicinal/metabolism*
;
Bacteria/genetics*
;
Symbiosis
4.Predictive value of bpMRI for pelvic lymph node metastasis in prostate cancer patients with PSA≤20 μg/L.
Lai DONG ; Rong-Jie SHI ; Jin-Wei SHANG ; Zhi-Yi SHEN ; Kai-Yu ZHANG ; Cheng-Long ZHANG ; Bin YANG ; Tian-Bao HUANG ; Ya-Min WANG ; Rui-Zhe ZHAO ; Wei XIA ; Shang-Qian WANG ; Gong CHENG ; Li-Xin HUA
National Journal of Andrology 2025;31(5):426-431
Objective: The aim of this study is to explore the predictive value of biparametric magnetic resonance imaging(bpMRI)for pelvic lymph node metastasis in prostate cancer patients with PSA≤20 μg/L and establish a nomogram. Methods: The imaging data and clinical data of 363 patients undergoing radical prostatectomy and pelvic lymph node dissection in the First Affiliated Hospital of Nanjing Medical University from July 2018 to December 2023 were retrospectively analyzed. Univariate analysis and multivariate logistic regression were used to screen independent risk factors for pelvic lymph node metastasis in prostate cancer, and a nomogram of the clinical prediction model was established. Calibration curves were drawn to evaluate the accuracy of the model. Results: Multivariate logistic regression analysis showed extrocapusular extension (OR=8.08,95%CI=2.62-24.97, P<0.01), enlargement of pelvic lymph nodes (OR=4.45,95%CI=1.16-17.11,P=0.030), and biopsy ISUP grade(OR=1.97,95%CI=1.12-3.46, P=0.018)were independent risk factors for pelvic lymph node metastasis. The C-index of the prediction model was 0.834, which indicated that the model had a good prediction ability. The actual value of the model calibration curve and the prediction probability of the model fitted well, indicating that the model had a good accuracy. Further analysis of DCA curve showed that the model had good clinical application value when the risk threshold ranged from 0.05 to 0.70.Conclusion: For prostate cancer patients with PSA≤20 μg/L, bpMRI has a good predictive value for the pelvic lymph node metastasis of prostate cancer with extrocapusular extension, enlargement of pelvic lymph nodes and ISUP grade≥4.
Humans
;
Male
;
Prostatic Neoplasms/diagnostic imaging*
;
Lymphatic Metastasis
;
Retrospective Studies
;
Nomograms
;
Prostate-Specific Antigen/blood*
;
Lymph Nodes/pathology*
;
Pelvis
;
Predictive Value of Tests
;
Prostatectomy
;
Lymph Node Excision
;
Risk Factors
;
Magnetic Resonance Imaging
;
Logistic Models
;
Middle Aged
;
Aged
5.Causal Associations between Particulate Matter 2.5 (PM 2.5), PM 2.5 Absorbance, and Inflammatory Bowel Disease Risk: Evidence from a Two-Sample Mendelian Randomization Study.
Xu ZHANG ; Zhi Meng WU ; Lu ZHANG ; Bing Long XIN ; Xiang Rui WANG ; Xin Lan LU ; Gui Fang LU ; Mu Dan REN ; Shui Xiang HE ; Ya Rui LI
Biomedical and Environmental Sciences 2025;38(2):167-177
OBJECTIVE:
Several epidemiological observational studies have related particulate matter (PM) exposure to Inflammatory bowel disease (IBD), but many confounding factors make it difficult to draw causal links from observational studies. The objective of this study was to explore the causal association between PM 2.5 exposure, its absorbance, and IBD.
METHODS:
We assessed the association of PM 2.5 and PM 2.5 absorbance with the two primary forms of IBD (Crohn's disease [CD] and ulcerative colitis [UC]) using Mendelian randomization (MR) to explore the causal relationship. We conducted two-sample MR analyses with aggregated data from the UK Biobank genome-wide association study. Single-nucleotide polymorphisms linked with PM 2.5 concentrations or their absorbance were used as instrumental variables (IVs). We used inverse variance weighting (IVW) as the primary analytical approach and four other standard methods as supplementary analyses for quality control.
RESULTS:
The results of MR demonstrated that PM 2.5 had an adverse influence on UC risk (odds ratio [ OR] = 1.010; 95% confidence interval [ CI] = 1.001-1.019, P = 0.020). Meanwhile, the results of IVW showed that PM 2.5 absorbance was also causally associated with UC ( OR = 1.012; 95% CI = 1.004-1.019, P = 0.002). We observed no causal relationship between PM 2.5, PM 2.5 absorbance, and CD. The results of sensitivity analysis indicated the absence of heterogeneity or pleiotropy, ensuring the reliability of MR results.
CONCLUSION
Based on two-sample MR analyses, there are potential positive causal relationships between PM 2.5, PM 2.5 absorbance, and UC.
Humans
;
Mendelian Randomization Analysis
;
Particulate Matter/analysis*
;
Polymorphism, Single Nucleotide
;
Inflammatory Bowel Diseases/genetics*
;
Air Pollutants/analysis*
;
Crohn Disease/genetics*
;
Colitis, Ulcerative/genetics*
;
Genome-Wide Association Study
;
Risk Factors
;
Environmental Exposure
7.Association between PM 2.5 Chemical Constituents and Preterm Birth: The Undeniable Role of Preconception H19 Gene Variation.
Ya Long WANG ; Pan Pan SUN ; Xin Ying WANG ; Jun Xi ZHANG ; Xiang Yu YU ; Jian CHAI ; Ruo DU ; Wen Yi LIU ; Fang Fang YU ; Yue BA ; Guo Yu ZHOU
Biomedical and Environmental Sciences 2025;38(8):1016-1022
8.Association between Serum Chloride Levels and Prognosis in Patients with Hepatic Coma in the Intensive Care Unit.
Shu Xing WEI ; Xi Ya WANG ; Yuan DU ; Ying CHEN ; Jin Long WANG ; Yue HU ; Wen Qing JI ; Xing Yan ZHU ; Xue MEI ; Da ZHANG
Biomedical and Environmental Sciences 2025;38(10):1255-1269
OBJECTIVE:
To explore the relationship between serum chloride levels and prognosis in patients with hepatic coma in the intensive care unit (ICU).
METHODS:
We analyzed 545 patients with hepatic coma in the ICU from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. Associations between serum chloride levels and 28-day and 1-year mortality rates were assessed using restricted cubic splines (RCSs), Kaplan-Meier (KM) curves, and Cox regression. Subgroup analyses, external validation, and mechanistic studies were also performed.
RESULTS:
A total of 545 patients were included in the study. RCS analysis revealed a U-shaped association between serum chloride levels and mortality in patients with hepatic coma. The KM curves indicated lower survival rates among patients with low chloride levels (< 103 mmol/L). Low chloride levels were independently linked to increased 28-day and 1-year all-cause mortality rates. In the multivariate models, the hazard ratio ( HR) for 28-day mortality in the low-chloride group was 1.424 (95% confidence interval [ CI]: 1.041-1.949), while the adjusted hazard ratio for 1-year mortality was 1.313 (95% CI: 1.026-1.679). Subgroup analyses and external validation supported these findings. Cytological experiments suggested that low chloride levels may activate the phosphorylation of the NF-κB signaling pathway, promote the expression of pro-inflammatory cytokines, and reduce neuronal cell viability.
CONCLUSION
Low serum chloride levels are independently associated with increased mortality in patients with hepatic coma.
Humans
;
Male
;
Female
;
Middle Aged
;
Intensive Care Units
;
Prognosis
;
Chlorides/blood*
;
Aged
;
Coma/blood*
;
Adult
9.Impact of bladder-neck angle on urination:An application study based on fluid-structure interaction
Xu-Dong JIA ; Xiao-Wan GUO ; Wan-Ze ZHANG ; Li-Juan LU ; Ya-Xuan WANG ; Kai-Long LIU ; Dong-Bin WANG ; Yue-Peng LIU ; Jin-Chun QI
National Journal of Andrology 2024;30(9):789-797
Objective:To assess the deformation of the bladder-neck opening and the impact of the bladder-neck angle(BNA)on urination in male patients by fluid-structure interaction(FSI)analysis.Methods:We established geometric models of the blad-der,prostate and urethra were established,incorporating both normal and enlarged BNAs,and assessed the effects of BNA alteration on urinary flow by FSI simulation of the flow rate and pressure of the urine within the bladder,bladder neck and urethra,and that of pros-tate displacement as well.We retrospectively analyzed the clinical data on 145 male patients from the Second Hospital of Hebei Medical University between June 2020 and June 2023,39 with acute urine retention(the AUR group)and 106 without(the non-AUR group),and evaluate the impact of BNA on urination based on the urinary flow rate and prostate volume.Results:Comparative simulation a-nalysis showed significant differences in the total urethral pressure and flow rate between the normal and enlarged BNA models(P<0.05).The maximum prostate displacement was found at the bladder neck,with moderate displacement and unchanged urethral diame-ter in the normal BNA model,but significant displacement and a reduced urethral opening diameter in the enlarged BNA model.FSI analysis confirmed an evident impact of enlarged BNA on urination,more significant in the AUR than in the non-AUR patients(P<0.05).The BNAs in the patients with the maximum urinary flow rate(Qmax)of<10,10-15 or>15 ml/s were 83.7°±2.5°,67.5°±1.8° and 65.1°±4.8° respectively,with statistically significant difference between the former one and the latter two groups(P<0.05).The BNAs in the patients with normal prostate volume or BPH of grade Ⅰ,Ⅱ,Ⅲ or Ⅳ were 65.0°±3.7°,67.2°±3.1°,71.5°±2.0°,82.8°±3.5° and 105.8°±6.0°,respectively(P<0.05),with statistically significant difference between BPH grades Ⅲ and Ⅳ(P<0.05)as well as between these two and the other three groups(P<0.05),but not among the normal prostate volume,BPH grade Ⅰ and BPH grade Ⅱ groups(P>0.05).Spearman correlation analysis indicated that BNA was strongly correlated with total prostate volume(TPV),transition zone volume(TZV),intravesical prostatic protrusion(IPP),prostatic urethral angle(PUA),IPSS,and Qmax(P<0.05).Conclusion:Changes in BNA affect urination and are closely associated with the se-verity of prostate hyperplasia.The BNA may be an important anatomical factor for assessing the severity of lower urinary tract symptoms in BPH patients.
10.Analysis of metabolites of nobiletin in rats in vivo based on characteristic ions
Zhe LI ; Yu-Qing WANG ; Dong-Xue WU ; Shuang-Feng LI ; Ya-Nan LI ; Shao-Ping WANG ; Jia-Yu ZHANG ; Long DAI
Chinese Traditional Patent Medicine 2024;46(6):1800-1809
AIM To analyze the metabolites of nobiletin in rats in vivo based on characteristic ions.METHODS Ten rats were assigned into administration group and control group,and given intragastric administration of the 0.5%CMC-Na suspension of nobiletin(250 mg/kg)and 0.5%CMC-Na solution,respectively,after which plasma,urine and feces were collected,solid phase extraction method was adopted in pretreatment,UHPLC-HRMS analysis was performed.The candidate metabolites were systematically described according to diagnostic product ions,chromatographic retention time,accurate molecular weight and neutral loss fragments,after which accurate metabolites were obtained in the established metabolite data set with-CH3(m/z 15)characteristic ions as a baits.RESULTS A total of 64 metabolites were identified,whose main metabolic pathways were glucuronidation,sulfation,hydrogenation and their compound reactions.CONCLUSION This experiment elucidates the metabolites of nobiletin in rats in vivo,which provides a new reference for its further development.

Result Analysis
Print
Save
E-mail