1.Three 2,3-diketoquinoxaline alkaloids with hepatoprotective activity from Heterosmilax yunnanensis
Rong-rong DU ; Xin-yi GUO ; Wen-jie QIN ; Hua SUN ; Xiu-mei DUAN ; Xiang YUAN ; Ya-nan YANG ; Kun LI ; Pei-cheng ZHANG
Acta Pharmaceutica Sinica 2024;59(2):413-417
Three 2,3-diketoquinoxaline alkaloids were isolated from
2.Exploration and validation of optimal cut-off values for tPSA and fPSA/tPSA screening of prostate cancer at different ages
Xiaomin LIU ; Hongyuan DUAN ; Dongqi ZHANG ; Chong CHEN ; Yuting JI ; Yunmeng ZHANG ; Zhuowei FENG ; Ya LIU ; Jingjing LI ; Yu ZHANG ; Chenyang LI ; Yacong ZHANG ; Lei YANG ; Zhangyan LYU ; Fangfang SONG ; Fengju SONG ; Yubei HUANG
Chinese Journal of Oncology 2024;46(4):354-364
Objective:To determine the total and age-specific cut-off values of total prostate specific antigen (tPSA) and the ratio of free PSA divided total PSA (fPSA/tPSA) for screening prostate cancer in China.Methods:Based on the Chinese Colorectal, Breast, Lung, Liver, and Stomach cancer Screening Trial (C-BLAST) and the Tianjin Common Cancer Case Cohort (TJ4C), males who were not diagnosed with any cancers at baseline since 2017 and received both tPSA and fPSA testes were selected. Based on Cox regression, the overall and age-specific (<60, 60-<70, and ≥70 years) accuracy and optimal cut-off values of tPSA and fPSA/tPSA ratio for screening prostate cancer were evaluated with time-dependent receiver operating characteristic curve (tdROC) and area under curve (AUC). Bootstrap resampling was used to internally validate the stability of the optimal cut-off value, and the PLCO study was used to externally validate the accuracy under different cut-off values.Results:A total of 5 180 participants were included in the study, and after a median follow-up of 1.48 years, a total of 332 prostate cancer patients were included. In the total population, the tdAUC of tPSA and fPSA/tPSA screening for prostate cancer were 0.852 and 0.748, respectively, with the optimal cut-off values of 5.08 ng/ml and 0.173, respectively. After age stratification, the age specific cut-off values of tPSA in the <60, 60-<70, and ≥70 age groups were 3.13, 4.82, and 11.54 ng/ml, respectively, while the age-specific cut-off values of fPSA/tPSA were 0.153, 0.135, and 0.130, respectively. Under the age-specific cut-off values, the sensitivities of tPSA screening for prostate cancer in males <60, 60-70, and ≥70 years old were 92.3%, 82.0%, and 77.6%, respectively, while the specificities were 84.7%, 81.3%, and 75.4%, respectively. The age-specific sensitivities of fPSA/tPSA for screening prostate cancer were 74.4%, 53.3%, and 55.9%, respectively, while the specificities were 83.8%, 83.7%, and 83.7%, respectively. Both bootstrap's internal validation and PLCO external validation provided similar results. The combination of tPSA and fPSA/tPSA could further improve the accuracy of screening.Conclusion:To improve the screening effects, it is recommended that age-specific cut-off values of tPSA and fPSA/tPSA should be used to screen for prostate cancer in the general risk population.
3.Exploration and validation of optimal cut-off values for tPSA and fPSA/tPSA screening of prostate cancer at different ages
Xiaomin LIU ; Hongyuan DUAN ; Dongqi ZHANG ; Chong CHEN ; Yuting JI ; Yunmeng ZHANG ; Zhuowei FENG ; Ya LIU ; Jingjing LI ; Yu ZHANG ; Chenyang LI ; Yacong ZHANG ; Lei YANG ; Zhangyan LYU ; Fangfang SONG ; Fengju SONG ; Yubei HUANG
Chinese Journal of Oncology 2024;46(4):354-364
Objective:To determine the total and age-specific cut-off values of total prostate specific antigen (tPSA) and the ratio of free PSA divided total PSA (fPSA/tPSA) for screening prostate cancer in China.Methods:Based on the Chinese Colorectal, Breast, Lung, Liver, and Stomach cancer Screening Trial (C-BLAST) and the Tianjin Common Cancer Case Cohort (TJ4C), males who were not diagnosed with any cancers at baseline since 2017 and received both tPSA and fPSA testes were selected. Based on Cox regression, the overall and age-specific (<60, 60-<70, and ≥70 years) accuracy and optimal cut-off values of tPSA and fPSA/tPSA ratio for screening prostate cancer were evaluated with time-dependent receiver operating characteristic curve (tdROC) and area under curve (AUC). Bootstrap resampling was used to internally validate the stability of the optimal cut-off value, and the PLCO study was used to externally validate the accuracy under different cut-off values.Results:A total of 5 180 participants were included in the study, and after a median follow-up of 1.48 years, a total of 332 prostate cancer patients were included. In the total population, the tdAUC of tPSA and fPSA/tPSA screening for prostate cancer were 0.852 and 0.748, respectively, with the optimal cut-off values of 5.08 ng/ml and 0.173, respectively. After age stratification, the age specific cut-off values of tPSA in the <60, 60-<70, and ≥70 age groups were 3.13, 4.82, and 11.54 ng/ml, respectively, while the age-specific cut-off values of fPSA/tPSA were 0.153, 0.135, and 0.130, respectively. Under the age-specific cut-off values, the sensitivities of tPSA screening for prostate cancer in males <60, 60-70, and ≥70 years old were 92.3%, 82.0%, and 77.6%, respectively, while the specificities were 84.7%, 81.3%, and 75.4%, respectively. The age-specific sensitivities of fPSA/tPSA for screening prostate cancer were 74.4%, 53.3%, and 55.9%, respectively, while the specificities were 83.8%, 83.7%, and 83.7%, respectively. Both bootstrap's internal validation and PLCO external validation provided similar results. The combination of tPSA and fPSA/tPSA could further improve the accuracy of screening.Conclusion:To improve the screening effects, it is recommended that age-specific cut-off values of tPSA and fPSA/tPSA should be used to screen for prostate cancer in the general risk population.
4.Changes in the Non-targeted Metabolomic Profile of Three-year-old Toddlers with Elevated Exposure to Polycyclic Aromatic Hydrocarbons
Yang LI ; Dan LIN ; Qin Xiu ZHANG ; Xiu Guang JU ; Ya SU ; Qian ZHANG ; Ping Hai DUAN ; Sen Wei YU ; Ling Bing WANG ; Tao Shu PANG
Biomedical and Environmental Sciences 2024;37(5):479-493
Objective To investigate changes in the urinary metabolite profiles of children exposed to polycyclic aromatic hydrocarbons(PAHs)during critical brain development and explore their potential link with the intestinal microbiota. Methods Liquid chromatography-tandem mass spectrometry was used to determine ten hydroxyl metabolites of PAHs(OH-PAHs)in 36-month-old children.Subsequently,37 children were categorized into low-and high-exposure groups based on the sum of the ten OH-PAHs.Ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was used to identify non-targeted metabolites in the urine samples.Furthermore,fecal flora abundance was assessed by 16S rRNA gene sequencing using Illumina MiSeq. Results The concentrations of 21 metabolites were significantly higher in the high exposure group than in the low exposure group(variable importance for projection>1,P<0.05).Most of these metabolites were positively correlated with the hydroxyl metabolites of naphthalene,fluorine,and phenanthrene(r=0.336-0.531).The identified differential metabolites primarily belonged to pathways associated with inflammation or proinflammatory states,including amino acid,lipid,and nucleotide metabolism.Additionally,these distinct metabolites were significantly associated with specific intestinal flora abundances(r=0.34-0.55),which were mainly involved in neurodevelopment. Conclusion Higher PAH exposure in young children affected metabolic homeostasis,particularly that of certain gut microbiota-derived metabolites.Further investigation is needed to explore the potential influence of PAHs on the gut microbiota and their possible association with neurodevelopmental outcomes.
5.Effect of knockdown of ARHGAP30 on proliferation and apoptosis of Siha cells
Ya-Ting PENG ; Duan LIU ; Jie MENG ; Wen-Chao LI ; Hui-Qi LI ; Hua GUO ; Mei-Lan NIU ; Qiao-Hong QIN
Chinese Pharmacological Bulletin 2024;40(5):847-853
Aim To investigate the changes in the proliferation and apoptosis of Siha cells after knocking down Rho GTPase-activating protein 30(ARHGAP30).Methods After designing specific shARHGAP30 primers and connecting them to the pLKO.1 vector,we transformed them into Escherichia coli competent cells,then co-transfecting them with lentiviral helper plasmids into HEK-293T cells.We collected and filtered cell supernatant to obtain the vi-rus to infect Siha cells.RT-qPCR and Western blot were used to detect knockdown efficiency,as well as changes in the expression of Bax and Bcl-2 after trans-fection.The CCK-8 method was employed to measure the proliferation level of cells after knockdown.Results After successful construction of a lentiviral plasmid with knockdown of the ARHGAP30 gene and establish-ment of stably transfected Siha cells,ARHGAP30 tran-scription and translation(P<0.01)in Siha cells de-creased,Bax/Bcl-2 significantly decreased(P<0.01),indicating decreased apoptosis and increased cell proliferation(P<0.01).Conclusions This study suggests the involvement of ARHGAP30 in the proliferation and apoptosis of Siha cells,and regulating the ARHGAP30 gene may interfere with the occurrence and development of cervical cancer.
6.Therapeutic effect of QiShenYiQi Dripping Pills on mice with heart failure with preserved ejection fraction
Zhen-zhen ZHANG ; Meng-yao WANG ; Yan-lu HAN ; Yun-hui HU ; Xiao-qiang LI ; Kai-min GUO ; Ya-jun DUAN ; Shuang ZHANG
Acta Pharmaceutica Sinica 2024;59(11):3094-3103
Heart failure with preserved ejection fraction (HFpEF) accounts for about half of the number of patients with heart failure. In addition to the typical features of heart failure such as myocardial stiffness and diastolic function impairment, the key characteristic of HFpEF is the normal left ventricular ejection fraction, which increases the difficulty of clinical diagnosis. QiShenYiQi Dripping Pills (QSYQ) is a standardized traditional Chinese medicine approved by the China Food and Drug Administration (CFDA), and many clinical studies have demonstrated the efficacy and safety of QSYQ in the treatment of heart failure with reduced ejection fraction, but the role of QSYQ in HFpEF has not been clarified. In this paper, high fat diet (HFD) and drinking water containing
7.Benchmark Dose Assessment for Coke Oven Emissions-Induced Mitochondrial DNA Copy Number Damage Effects.
Zhao Fan YAN ; Zhi Guang GU ; Ya Hui FAN ; Xin Ling LI ; Ze Ming NIU ; Xiao Ran DUAN ; Ali Manthar MALLAH ; Qiao ZHANG ; Yong Li YANG ; Wu YAO ; Wei WANG
Biomedical and Environmental Sciences 2023;36(6):490-500
OBJECTIVE:
The study aimed to estimate the benchmark dose (BMD) of coke oven emissions (COEs) exposure based on mitochondrial damage with the mitochondrial DNA copy number (mtDNAcn) as a biomarker.
METHODS:
A total of 782 subjects were recruited, including 238 controls and 544 exposed workers. The mtDNAcn of peripheral leukocytes was detected through the real-time fluorescence-based quantitative polymerase chain reaction. Three BMD approaches were used to calculate the BMD of COEs exposure based on the mitochondrial damage and its 95% confidence lower limit (BMDL).
RESULTS:
The mtDNAcn of the exposure group was lower than that of the control group (0.60 ± 0.29 vs. 1.03 ± 0.31; P < 0.001). A dose-response relationship was shown between the mtDNAcn damage and COEs. Using the Benchmark Dose Software, the occupational exposure limits (OELs) for COEs exposure in males was 0.00190 mg/m 3. The OELs for COEs exposure using the BBMD were 0.00170 mg/m 3 for the total population, 0.00158 mg/m 3 for males, and 0.00174 mg/m 3 for females. In possible risk obtained from animal studies (PROAST), the OELs of the total population, males, and females were 0.00184, 0.00178, and 0.00192 mg/m 3, respectively.
CONCLUSION
Based on our conservative estimate, the BMDL of mitochondrial damage caused by COEs is 0.002 mg/m 3. This value will provide a benchmark for determining possible OELs.
Male
;
Female
;
Animals
;
Coke
;
Polycyclic Aromatic Hydrocarbons
;
DNA Copy Number Variations
;
Benchmarking
;
Occupational Exposure/analysis*
;
DNA, Mitochondrial/genetics*
;
DNA Damage
8.Toxicity attenuation processing technology and mechanism of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction.
Bing-Yin LI ; Jun-Ming WANG ; Ling-Ling SONG ; Ya-Qian DUAN ; Bing-Yu LONG ; Ling-Yu QIN ; Xiao-Hui WU ; Yan-Mei WANG ; Ming-Zhu GONG
China Journal of Chinese Materia Medica 2023;48(9):2455-2463
This study explored toxicity attenuation processing technology of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction for the first time, and further explored its detoxification mechanism. Nine processed products of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction were prepared by orthogonal experiment with three factors and three levels. Based on the decrease in the content of the main hepatotoxic component diosbulbin B before and after processing of Rhizoma Dioscoreae Bulbiferae by high-performance liquid chromatography, the toxicity attenuation technology was preliminarily screened out. On this basis, the raw and representative processed products of Rhizoma Dioscoreae Bulbiferae were given to mice by gavage with 2 g·kg~(-1)(equival to clinical equivalent dose) for 21 d. The serum and liver tissues were collected after the last administration for 24 h. The serum biochemical indexes reflecting liver function and liver histopathology were combined to further screen out and verify the proces-sing technology. Then, the lipid peroxidation and antioxidant indexes of liver tissue were detected by kit method, and the expressions of NADPH quinone oxidoreductase 1(NQO1) and glutamate-cysteine ligase(GCLM) in mice liver were detected by Western blot to further explore detoxification mechanism. The results showed that the processed products of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction reduced the content of diosbulbin B and improved the liver injury induced by Rhizoma Dioscoreae Bul-biferae to varying degrees, and the processing technology of A_2B_2C_3 reduced the excessive levels of alanine transaminase(ALT) and aspartate transaminase(AST) induced by raw Rhizoma Dioscoreae Bulbiferae by 50.2% and 42.4%, respectively(P<0.01, P<0.01). The processed products of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction reversed the decrease protein expression levels of NQO1 and GCLM in the liver of mice induced by raw Rhizoma Dioscoreae Bulbiferae to varying degrees(P<0.05 or P<0.01), and it also reversed the increasing level of malondialdehyde(MDA) and the decreasing levels of glutathione(GSH), glutathione peroxidase(GPX), and glutathione S-transferase(GST) in the liver of mice(P<0.05 or P<0.01). In summary, this study shows that the optimal toxicity attenuation processing technology of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction is A_2B_2C_3, that is, 10% of Paeoniae Radix Alba decoction is used for moistening Rhizoma Dioscoreae Bulbiferae and processed at 130 ℃ for 11 min. The detoxification mechanism involves enhancing the expression levels of NQO1 and GCLM antio-xidant proteins and related antioxidant enzymes in the liver.
Mice
;
Animals
;
Antioxidants/analysis*
;
Plant Extracts/pharmacology*
;
Drugs, Chinese Herbal/chemistry*
;
Rhizome/chemistry*
;
Paeonia/chemistry*
;
Glutathione/analysis*
9.Identification and expression of uridine diphosphate glycosyltransferase(UGT) gene family from Dendrobium officinale.
Jia-Dong CHEN ; Wu JIANG ; Min-Quan SONG ; Yin-Jun ZHOU ; Ya-Ping LI ; Xiao-Jing DUAN ; Zheng-Ming TAO
China Journal of Chinese Materia Medica 2023;48(7):1840-1850
Uridine diphosphate glycosyltransferase(UGT) is a highly conserved protein in plants, which usually functions in secondary metabolic pathways. This study used the Hidden Markov Model(HMM) to screen out members of UGT gene family in the whole genome of Dendrobium officinale, and 44 UGT genes were identified. Bioinformatics was used to analyze the structure, phylogeny, and promoter region components of D. officinale genes. The results showed that UGT gene family could be divided into four subfamilies, and UGT gene structure was relatively conserved in each subfamily, with nine conserved domains. The upstream promoter region of UGT gene contained a variety of cis-acting elements related to plant hormones and environmental factors, indicating that UGT gene expression may be induced by plant hormones and external environmental factors. UGT gene expression in different tissues of D. officinale was compared, and UGT gene expression was found in all parts of D. officinale. It was speculated that UGT gene played an important role in many tissues of D. officinale. Through transcriptome analysis of D. officinale mycorrhizal symbiosis environment, low temperature stress, and phosphorus deficiency stress, this study found that only one gene was up-regulated in all three conditions. The results of this study can help understand the functions of UGT gene family in Orchidaceae plants and provide a basis for further study on the molecular regulation mechanism of polysaccharide metabolism pathway in D. officinale.
Dendrobium/genetics*
;
Plant Growth Regulators
;
Glycosyltransferases/metabolism*
;
Gene Expression Profiling
;
Mycorrhizae
;
Phylogeny
;
Plant Proteins/metabolism*
10.Application of mixture analysis methods in association between metals mixture exposure and DNA oxidative damage.
Yan Hua WANG ; Hui Ge YUAN ; Li Ya ZHANG ; Yang LIN ; Ting WANG ; Huan XU ; Xing ZHAO ; Hua Wei DUAN
Chinese Journal of Preventive Medicine 2023;57(7):1026-1031
Objectives: To study the association between metals mixture exposure and DNA oxidative damage using mixture analysis methods, and to explore the most significant exposure factors that cause DNA oxidative damage. Methods: Workers from steel enterprises were recruited in Shandong Province. Urinary metals were measured by using the inductively coupled plasma mass spectrometry method. The level of urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) was determined by using the ultra-high performance liquid chromatography-mass spectrometry method. Bayesian kernel machine regression (BKMR), elastic net regression and quantile g-computation regression were used to analyze the association between urinary metals and urinary 8-OHdG. Results: A total of 768 subjects aged (36.15±7.40) years old were included in the study. BKMR, elastic net regression and quantile g-computation all revealed an overall positive association between the mixture concentration and increased urinary 8-OHdG. The quantile g-computation results showed that with a 25% increase in metal mixtures, the urinary 8-OHdG level increased by 77.60%. The elastic net regression showed that with a 25% increase in exposure risk score, the urinary 8-OHdG level increased by 26%. The BKMR summarized the contribution of individual exposures to the response, and selenium, zinc, and nickel were significant contributors to the urinary 8-OHdG elevation. Conclusion: Exposure to mixed metals causes elevated levels of DNA oxidative damage, and selenium, zinc, and nickel are significant exposure factors.
Humans
;
Adult
;
Nickel/toxicity*
;
Selenium
;
Bayes Theorem
;
Metals/toxicity*
;
8-Hydroxy-2'-Deoxyguanosine
;
Oxidative Stress/physiology*
;
Zinc
;
DNA Damage

Result Analysis
Print
Save
E-mail