1.P4HA1 mediates YAP hydroxylation and accelerates collagen synthesis in temozolomide-resistant glioblastoma.
Xueru LI ; Gangfeng YU ; Xiao ZHONG ; Jiacheng ZHONG ; Xiangyu CHEN ; Qinglong CHEN ; Jinjiang XUE ; Xi YANG ; Xinchun ZHANG ; Yao LING ; Yun XIU ; Yaqi DENG ; Hongda LI ; Wei MO ; Yong ZHU ; Ting ZHANG ; Liangjun QIAO ; Song CHEN ; Fanghui LU
Chinese Medical Journal 2025;138(16):1991-2005
BACKGROUND:
Temozolomide (TMZ) resistance is a significant challenge in treating glioblastoma (GBM). Collagen remodeling has been shown to be a critical factor for therapy resistance in other cancers. This study aimed to investigate the mechanism of TMZ chemoresistance by GBM cells reprogramming collagens.
METHODS:
Key extracellular matrix components, including collagens, were examined in paired primary and recurrent GBM samples as well as in TMZ-treated spontaneous and grafted GBM murine models. Human GBM cell lines (U251, TS667) and mouse primary GBM cells were used for in vitro studies. RNA-sequencing analysis, chromatin immunoprecipitation, immunoprecipitation-mass spectrometry, and co-immunoprecipitation assays were conducted to explore the mechanisms involved in collagen accumulation. A series of in vitro and in vivo experiments were designed to assess the role of the collagen regulators prolyl 4-hydroxylase subunit alpha 1 (P4HA1) and yes-associated protein (YAP) in sensitizing GBM cells to TMZ.
RESULTS:
This study revealed that TMZ exposure significantly elevated collagen type I (COL I) expression in both GBM patients and murine models. Collagen accumulation sustained GBM cell survival under TMZ-induced stress, contributing to enhanced TMZ resistance. Mechanistically, P4HA1 directly binded to and hydroxylated YAP, preventing ubiquitination-mediated YAP degradation. Stabilized YAP robustly drove collagen type I alpha 1 ( COL1A1) transcription, leading to increased collagen deposition. Disruption of the P4HA1-YAP axis effectively reduced COL I deposition, sensitized GBM cells to TMZ, and significantly improved mouse survival.
CONCLUSION
P4HA1 maintained YAP-mediated COL1A1 transcription, leading to collagen accumulation and promoting chemoresistance in GBM.
Temozolomide
;
Humans
;
Glioblastoma/drug therapy*
;
Animals
;
Mice
;
Cell Line, Tumor
;
Drug Resistance, Neoplasm/genetics*
;
YAP-Signaling Proteins
;
Hydroxylation
;
Dacarbazine/pharmacology*
;
Adaptor Proteins, Signal Transducing/metabolism*
;
Transcription Factors/metabolism*
;
Collagen/biosynthesis*
;
Collagen Type I/metabolism*
;
Prolyl Hydroxylases/metabolism*
;
Antineoplastic Agents, Alkylating/therapeutic use*
2.Increased oxidative damages of erythrocytes caused by declined blood oxygen saturation.
Yong ZHAO ; Ke LAN ; Xiang WANG ; Xueru DENG ; Yanlian XIONG ; Jinlong TANG
Journal of Biomedical Engineering 2012;29(2):323-327
This paper was to explore the effect of blood oxygen saturation (SO2) on oxidative damages of erythrocytes under the condition of oxidative stress. Keeping SO2 of cultured erythrocytes in vitro at the states of 0.3, 0.5, 0.7, 0.9 and 0.98, respectively, we induced oxidative stress by tert-buthylhydroperoxide (BHP, 0.15 mmol/L of final concentration). After incubation, antioxidant capacity was assessed by measuring content of reduced glutathin hormone (GSH) in erythrocytes. Methemoglobin (MetHb) content, lipid peroxidation (thiobarbituric acid-reactive substances, TBARS) and denatured globin-chains on the plasma membrane were measured to assess the extent of oxidative damages. The results showed that in the presence of BHP, GSH contents increased from 0.3 to 0.98 groups; MetHb, TBARS and globin-chains levels all dropped with the rise of SO2. In conclusion, antioxidant capacity and oxidative damages of erythrocytes are closely related to SO2, declined SO2 could promote oxidative damages of erythrocytes.
Cells, Cultured
;
Erythrocytes
;
cytology
;
metabolism
;
physiology
;
Glutathione
;
blood
;
Humans
;
Methemoglobin
;
metabolism
;
Oxidative Stress
;
drug effects
;
Oximetry
;
methods
;
Oxygen
;
blood
;
Thiobarbituric Acid Reactive Substances
;
metabolism
;
tert-Butylhydroperoxide
;
toxicity

Result Analysis
Print
Save
E-mail