1.Psychological experiences and care needs of elderly patients with chronic obstructive pulmonary disease following dysphagia: a qualitative research
Ping GONG ; Yingru DOU ; Xuemei DAI ; Xueping JIANG ; Meifang WU ; Fan JIANG
Chinese Journal of Rehabilitation Theory and Practice 2025;31(1):117-124
ObjectiveTo explore psychological experiences and care needs of elderly patients with chronic obstructive pulmonary disease (COPD) following dysphagia. MethodsFrom April to June, 2024, 13 elderly patients with COPD and dysphagia received treatment in Yixing No. 2 People's Hospital (Yixing Occupational Disease Institute) and Northern Jiangsu People's Hospital were interviewed. Nvivo 11.0 and content analysis were employed to analyze and summarize themes. ResultsTwo main themes were identified. The psychological experiences included fear of eating due to swallowing and choking, swallowing anxiety in social situations, concerns about malnutrition, and emotional loss related to family. The care needs included improvement in swallowing function, adjustment of food texture, assistance with disease adaptation and effective access to health education information. ConclusionHealthcare professionals should thoroughly understand the psychological and needs of elderly patients with COPD-related dysphagia, and comprehensive nursing strategies should be developed and implemented to improve swallowing function and overall quality of life.
2.Quality Evaluation of Lycii Cortex and Roasted Lycii Cortex Based on Fingerprint and Content Determination
Yihuan WU ; Wenli ZENG ; Xuemei QIN ; Zongxin SHI ; Chengcheng HUANG ; Yuntao DAI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):165-172
ObjectiveTo establish fingerprint profiles and a quantitative determination method for Lycii Cortex, providing a scientific basis for the formulation of quality standards for Lycii Cortex and its roasted products. MethodsHigh performance liquid chromatography(HPLC) was developed for the quantitative method for determining kukoamine B in Lycii Cortex and its roasted products on an Alphasil XD-C18 CH column(4.6 mm×250 mm, 5 μm). HPLC fingerprint profiles were established for 10 batches of Lycii Cortex and its roasted products, and ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was used to identify the common peaks based on reference standards, literature and MS information. Quality evaluation indicators included yield of decoction pieces, appearance properties, content of kukoamine B, and fingerprint profiles. The temperature and time of the roasting process were investigated to select the optimal preparation process, which was then verified. Additionally, chemical pattern recognition was combined to assess the differences in the chemical composition of Lycii Cortex before and after roasting, as well as among samples from different origins. ResultsQuantitative analysis indicated that the contents of kukoamine B in Lycii Cortex and its roasted products were 0.35%-5.51% and 0.24%-4.15%, respectively. The transfer rate of kukoamine B was 58.6%-78.9% after roasting. The fingerprint profile analysis demonstrated that the method established in this study effectively separated kukoamine B from other components in the samples and distinctly differentiated it from its impurity peak, cis-N-caffeoylputrescine. The HPLC fingerprint profiles of Lycii Cortex and its roasted products showed high similarity(all above 0.95), with 7 common peaks identified and five common components, including kukoamine B, cis-N-caffeoylputrescine, N-coumaroyl tyramine, feruloyltyramine, and glucosyringic acid, confirmed. Process optimization confirmed that baking at 110 ℃ for 20 min was a stable and feasible method for roasting Lycii Cortex. Principal component analysis and cluster analysis showed that there was little difference in the chemical composition between raw and roasted Lycii Cortex, but the quality of Lycii Cortex from different origins differed greatly. ConclusionThis study successfully established the fingerprint profiles and a quantitative method for the effective component kukoamine B in Lycii Cortex and roasted Lycii Cortex. The qualitative and quantitative analyses clarified that the impact of the roasting process on the chemical composition of Lycii Cortex was less significant than the variations due to its geographical origin. The findings of this study offer a reference for the development of quality evaluation methods and the establishment of quality standards for Lycii Cortex and its processed products.
3.In Vitro and in vivo Component Identification of Danshenyin Based on UPLC-Q-TOF-MS/MS
Sitong ZHANG ; Xianrun HU ; Wenkang LIU ; Jinchun LEI ; Xuemei CHENG ; Xiaojun WU ; Wansheng CHEN ; Manlin LI ; Changhong WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):175-183
ObjectiveTo elucidate the chemical composition of Danshenyin and its blood components in rats after oral administration. MethodsUltra performance liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS/MS) coupled with PeakView 1.2 software was used to systematically characterize and identify the components of Danshenyin aqueous extract and its migratory components in rat blood after oral administration based on the retention time, quasi-molecular ion peaks, secondary fragmentation ions, and literature reports, and a preliminary compounds identification of Salviae Miltiorrhizae Radix et Rhizoma aqueous extract, the co-decoction of Santali Albi Lignum and Amomi Fructus was carried out to attribute the chemical constituents of the aqueous extract of Danshenyin. ResultsA total of 73 compounds, including 21 phenolic acids, 23 diterpenes, 6 flavonoids, 7 organic acids, 3 volatile oils and 13 others, were identified from the aqueous extract of Danshenyin. And 36 prototypes and 15 metabolites were identified in rat plasma, the major metabolic pathways included reduction, hydration, hydroxylation, demethylation, methylation, sulfation and others, these metabolites were mainly derived from tanshinones and salvianolic acids. ConclusionThe main blood components of the aqueous extract of Danshenyin are salvianolic acids and tanshinones, which may be the material basis of the efficacy. This study can provide reference for pharmacological research, quality control, and clinical application of Danshenyin.
5.Reversing metabolic reprogramming by CPT1 inhibition with etomoxir promotes cardiomyocyte proliferation and heart regeneration via DUSP1 ADP-ribosylation-mediated p38 MAPK phosphorylation.
Luxun TANG ; Yu SHI ; Qiao LIAO ; Feng WANG ; Hao WU ; Hongmei REN ; Xuemei WANG ; Wenbin FU ; Jialing SHOU ; Wei Eric WANG ; Pedro A JOSE ; Yongjian YANG ; Chunyu ZENG
Acta Pharmaceutica Sinica B 2025;15(1):256-277
The neonatal mammalian heart has a remarkable regenerative capacity, while the adult heart has difficulty to regenerate. A metabolic reprogramming from glycolysis to fatty acid oxidation occurs along with the loss of cardiomyocyte proliferative capacity shortly after birth. In this study, we sought to determine if and how metabolic reprogramming regulates cardiomyocyte proliferation. Reversing metabolic reprogramming by carnitine palmitoyltransferase 1 (CPT1) inhibition, using cardiac-specific Cpt1a and Cpt1b knockout mice promoted cardiomyocyte proliferation and improved cardiac function post-myocardial infarction. The inhibition of CPT1 is of pharmacological significance because those protective effects were replicated by etomoxir, a CPT1 inhibitor. CPT1 inhibition, by decreasing poly(ADP-ribose) polymerase 1 expression, reduced ADP-ribosylation of dual-specificity phosphatase 1 in cardiomyocytes, leading to decreased p38 MAPK phosphorylation, and stimulation of cardiomyocyte proliferation. Our present study indicates that reversing metabolic reprogramming is an effective strategy to stimulate adult cardiomyocyte proliferation. CPT1 is a potential therapeutic target for promoting heart regeneration and myocardial infarction treatment.
6.Danzhi Jiangtang Capsule improves renal vascular endothelial function in rats with diabetic nephropathy by downregulating the Notch1/NICD/MAML1 signaling pathway.
Sijia ZHU ; Jingcheng MA ; Yujiao ZHENG ; Chuanyun WU ; Jiangen ZHAO ; Lingxiu LI ; Li WANG ; Xuemei ZHOU
Journal of Southern Medical University 2025;45(10):2250-2257
OBJECTIVES:
To investigate the therapeutic mechanism of Danzhi Jiangtang Capsule (DZJTC) for repairing renal vascular endothelial injury in rats with diabetic nephropathy (DN).
METHODS:
Fifty male SD rat models of DN, established by left nephrectomy, high-sugar and high-fat diet and streptozotocin injection, were randomized into DN model group, low-, medium-, and high-dose DZJTC treatment groups, and DAPT (a γ-secretase inhibitor) treatment group, with 10 rats with normal feeding as the control group. DZJTC was administered by daily gavage at 0.315, 0.63, or 1.26 g/kg, and DAPT (20 mg/kg, dissolved in 50% CMC-Na solution) was given by gavage every other day for 4 weeks; normal saline was given in the control and model groups. After treatment, the levels of creatinine (CRE), blood urea nitrogen (BUN), and microalbuminuria (mALB) were detected with ELISA, and renal pathologies were observed by transmission electron microscopy. Renal expressions of vascular endothelial growth factor (VEGF) and endothelin-1 (ET-1) were measured by immunohistochemistry, and the protein expressions of CD31 and Notch signaling pathway components were detected using Western blotting.
RESULTS:
The rat models of DN showed significantly increased CRE, BUN, and mALB levels, obvious renal pathologies under electron microscopy, increased renal VEGF, ET-1 and CD31 expressions, and upregulated Notch1, NICD, and MAML1 protein levels. Treatment with DZJTC at the 3 doses and DAPT significantly reduced CRE, BUN, and mALB levels, improved renal pathology, decreased VEGF, ET-1 and CD31 expressions, and lowered Notch1, NICD and MAML1 levels, and the effects were the most pronounced with high-dose DZJTC.
CONCLUSIONS
DZJTC ameliorates hyperproliferation and dysfunction of renal vascular endothelium in DN rats possibly by regulating renal VEGF and ET-1 levels via inhibiting NICD- and MAML1-mediated Notch signaling pathway.
Animals
;
Male
;
Drugs, Chinese Herbal/therapeutic use*
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
Diabetic Nephropathies/drug therapy*
;
Receptor, Notch1/metabolism*
;
Kidney/blood supply*
;
Diabetes Mellitus, Experimental
;
Down-Regulation
;
Endothelium, Vascular/metabolism*
;
Nuclear Proteins/metabolism*
7.Single-Nucleus Transcriptomics of the Nucleus Accumbens Reveals Cell-Type-Specific Dysregulation in Adolescent Macaques with Depressive-Like Behaviors.
Teng TENG ; Qingyuan WU ; Bangmin YIN ; Jushuang ZHANG ; Xuemei LI ; Lige ZHANG ; Xinyu ZHOU ; Peng XIE
Neuroscience Bulletin 2025;41(7):1127-1144
Adolescent depression is increasingly recognized as a serious mental health disorder with distinct clinical and molecular features. Using single-nucleus RNA sequencing, we identified cell-specific transcriptomic changes in the nucleus accumbens (NAc), particularly in astrocytes, of adolescent macaques exhibiting depressive-like behaviors. The level of diacylglycerol kinase beta was significantly reduced in neurons and glial cells of depressed macaques, while FKBP5 levels increased in glial cells. Disruption of GABAergic synapses and disruption of D-glutamine and D-glutamate metabolism were linked to depressive phenotypes in medium spiny neurons (MSNs) and subtypes of astrocytes. Communication pathways between astrocytes and D1/D2-MSNs were also disrupted, involving factors like bone morphogenetic protein-6 and Erb-B2 receptor tyrosine kinase-4. Bulk transcriptomic and proteomic analyses corroborated these findings, and FKBP5 upregulation was confirmed by qRT-PCR, western blotting, and immunofluorescence in the NAc of rats and macaques with chronic unpredictable mild stress. Our results highlight the specific roles of different cell types in adolescent depression in the NAc, offering potential targets for new antidepressant therapies.
Animals
;
Nucleus Accumbens/metabolism*
;
Male
;
Transcriptome
;
Depression/genetics*
;
Astrocytes/metabolism*
;
Neurons/metabolism*
;
Rats
8.An inductive learning-based method for predicting drug-gene interactions using a multi-relational drug-disease-gene graph.
Jian HE ; Yanling WU ; Linxi YUAN ; Jiangguo QIU ; Menglong LI ; Xuemei PU ; Yanzhi GUO
Journal of Pharmaceutical Analysis 2025;15(8):101347-101347
Computational analysis can accurately detect drug-gene interactions (DGIs) cost-effectively. However, transductive learning models are the hotspot to reveal the promising performance for unknown DGIs (both drugs and genes are present in the training model), without special attention to the unseen DGIs (both drugs and genes are absent in the training model). In view of this, this study, for the first time, proposed an inductive learning-based model for the precise identification of unseen DGIs. In our study, by integrating disease nodes to avoid data sparsity, a multi-relational drug-disease-gene (DDG) graph was constructed to achieve effective fusion of data on DDG intro-relationships and inter-actions. Following the extraction of graph features by utilizing graph embedding algorithms, our next step was the retrieval of the attributes of individual gene and drug nodes. In this way, a hybrid feature characterization was represented by integrating graph features and node attributes. Machine learning (ML) models were built, enabling the fulfillment of transductive predictions of unknown DGIs. To realize inductive learning, this study generated an innovative idea of transforming known node vectors derived from the DDG graph into representations of unseen nodes using node similarities as weights, enabling inductive predictions for the unseen DGIs. Consequently, the final model was superior to existing models, with significant improvement in predicting both external unknown and unseen DGIs. The practical feasibility of our model was further confirmed through case study and molecular docking. In summary, this study establishes an efficient data-driven approach through the proposed modeling, suggesting its value as a promising tool for accelerating drug discovery and repurposing.
9.Comparison of genetic diversity of Anopheles minimus in Nabang Town, Yingjiang County, Yunnan Province between 2014 and 2021
ZENG Xucan ; XU Xiang ; WU Linbo ; LAN Xuemei ; TAN Weilong
China Tropical Medicine 2024;24(2):132-
Objective To compare the changes in the genetic diversity of Anopheles minimus through the research on the population genetic characteristics of Anopheles minimus between different years in Nabang Town, Yingjiang County, Yunnan Province. Methods Anopheles mosquitoes were collected by light traps in Nabang Town, Yingjiang County, Yunnan Province in May 2014 and May 2021. After morphological identification, each mosquito was individually stored in separate tubes for further analysis. DNA of Anopheles minimus was extracted using kits. Microsatellite sequences in the template DNA were amplified using eight pairs of fluorescent primers, and the resulting products were subjected to capillary electrophoresis by a sequencing company. PopGen32 software was used to calculate the observed number of alleles (Na), effective number of alleles (Ne), observed heterozygosity (Ho), expected heterozygosity (He), and Shannon's information index (I) for individual microsatellite loci and population groups. PIC-CALC software was used to calculate the polymorphic information content (PIC). Results A total of 158 mosquitoes belonging to 6 Anopheles species were captured in 2014, while 529 mosquitoes belonging to 5 Anopheles species were captured in 2021. The composition ratio of Anopheles minimus among the mosquito species differed significantly between 2014 and 2021 (χ2=70.48, P<0.01). For 8 microsatellite loci, a total of 85 alleles were detected, a range of 6-20 alleles per locus and an average of 10.625 alleles. Ne ranged from 1.717 to 7.797, with an average of 4.011. The highest PIC was found in the am4 locus, and the lowest in the am25 locus. For the population groups, 77 alleles were found in 2014, and 62 alleles were found in 2021. Ne ranged from 1.630 to 8.658, with an average of 4.147 in 2014. Ne ranged from 1.760 to 6.744, with an average of 3.698 in 2021. The average Ho was 0.641 in 2014 and 0.650 in 2021, while the average He was 0.699 in 2014 and 0.691 in 2021. The Shannon's index ranged from 0.774 to 2.493 in 2014, with an average of 1.579, and from 0.938 to 2.224 in 2021, with an average of 1.464. Na, Ne, I, and PIC were all higher in 2014 compared to 2021, with Na: 9.625>7.750, Ne: 4.147>3.698, I: 1.579>1.464, and PIC: 0.655>0.640, respectively. Conclusions The populations of Anopheles minimus in Nabang Town, Yingjiang County, exhibited high levels of polymorphism in both 2014 and 2021. However, the genetic diversity of the population in 2021 was lower than that in 2014.
10.A successfully treated case of respiratory failure caused by eating Nassariidaes
Lingqiao CHEN ; Zhenghui WU ; Haiyan ZHANG ; Zhongqiu LU ; Yahui TANG ; Xuemei GU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2024;42(4):295-297
Food poisoning caused by Nassariidaes has occurred frequently in coastal areas of China, especially in summer and autumn. Nassariidaes poisoning can be manifested as lip and tongue paralysis, dizziness, headache, nausea and vomiting, arrhythmia and even respiratory failure. We admitted a case of respiratory failure caused by eating Nassariidaes. After timely respiratory support, hemoperfusion and other active treatment, the patient was recovered and was discharged. This paper summarized clinical characteristics and treatment of Nassariidaes poisoning, in order to provide reference for clinical diagnosis and treatment of similar cases.

Result Analysis
Print
Save
E-mail