1.Effects of Yishen paidu formula on renal fibrosis in rats with chronic renal failure by regulating the ROS/TXNIP/NLRP3 pathway
Li FENG ; Bowen PENG ; Bin PENG ; Xue FENG ; Shuangyi ZHU ; Wei XIONG ; Xi HU ; Xiaohui SUN
China Pharmacy 2026;37(2):174-179
OBJECTIVE To investigate the effects and mechanism of the Yishen paidu formula on renal fibrosis in rats with chronic renal failure (CRF) through the reactive oxygen species (ROS)/thioredoxin-interacting protein (TXNIP)/NOD-like receptor thermal protein domain associated protein 3 (NLRP3) pathway. METHODS Rats were randomly divided into control group, model group, Yishen paidu formula low-dose (Yishen paidu formula-L) group, Yishen paidu formula high-dose (Yishen paidu formula- H) group, Yishen paidu formula-H+pcDNA-NC group, and Yishen paidu formula-H+ pcDNA-TXNIP group, with 10 rats in each group. Except for control group, all other rats were fed a diet containing 0.5% adenine to establish a CRF model; the rats were then administered corresponding drugs or normal saline intragastrically or via tail vein, once daily, for 8 consecutive weeks. After the last administration, the levels of serum creatinine (Scr), blood urea nitrogen (BUN), ROS, superoxide dismutase (SOD), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1β were measured in each group. Pathological changes in renal tissue were observed, and the protein expression levels of Collagen Ⅲ, α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1), TXNIP and NLRP3 in renal tissue were detected. RESULTS Compared with model group, the renal histopathological damage and fibrosis of rats in Yishen paidu formula-L group and Yishen paidu formula-H group were significantly alleviated. The levels of Scr, BUN, ROS, MDA, TNF- α, IL-6 and IL-1β, and the protein expressions of Collagen Ⅲ, α-SMA, TGF-β1, TXNIP and NLRP3 were significantly decreased, while SOD levels were significantly increased (P<0.05). Moreover, the changes were more pronounced in the Yishen paidu formula-H group (P<0.05). Compared with Yishen paidu formula-H+pcDNA-NC group, above indexes of rats in Yishen paidu formula-H+pcDNA-TXNIP group were reversed significantly (P<0.05). CONCLUSIONS Yishen paidu formula can inhibit renal fibrosis in CRF rats by suppressing the ROS/TXNIP/NLRP3 pathway.
2.Regulation of Signaling Pathways Related to Myocardial Infarction by Traditional Chinese Medicine: A Review
Wenjun WU ; Chidao ZHANG ; Jingjing WEI ; Xue LI ; Bin LI ; Xinlu WANG ; Mingjun ZHU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):321-330
The pathological changes of myocardial infarction (MI) are mainly characterized by progressive myocardial ischemic necrosis, decline in cardiac diastolic function, thinning of the ventricular wall, and enlargement of the ventricles. The clinical manifestations include myocardial ischemia, heart failure, arrhythmia, shock, and even sudden cardiac death, rendering MI one of the most perilous cardiovascular diseases. Currently, the clinical treatment for MI primarily involves interventional procedures and drug therapy. However, due to their significant side effects and high complication rates associated with these treatments, they fail to ensure a satisfactory quality of life and long-term prognosis for patients. On the other hand, traditional Chinese medicine has demonstrated remarkable potential in improving patient prognosis while reducing side effects. Research has elucidated that various signaling pathways such as nuclear transcription factor-κB (NF-κB), adenosine 5̒-monophosphate-activated protein kinase (AMPK), transforming growth factor-β (TGF-β)/Smads, mitogen-activated protein kinase (MAPK), Wnt/β-catenin (β-catenin), and phosphatidylinositol 3-kinase (PI3K)/protein kinase B(Akt) play crucial roles in regulating the occurrence and development of MI. Effectively modulating these signaling pathways through its therapeutic interventions, traditional Chinese medicine can enhance MI management by inhibiting apoptosis, providing anti-inflammatory properties, alleviating oxidative stress levels, and resisting myocardial ischemia. Due to its notable efficacy and favorable safety, it has become an area of focus in clinical practice.
3.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
4.Optimization of simmering technology of Rheum palmatum from Menghe Medical School and the changes of chemical components after processing
Jianglin XUE ; Yuxin LIU ; Pei ZHONG ; Chanming LIU ; Tulin LU ; Lin LI ; Xiaojing YAN ; Yueqin ZHU ; Feng HUA ; Wei HUANG
China Pharmacy 2025;36(1):44-50
OBJECTIVE To optimize the simmering technology of Rheum palmatum from Menghe Medical School and compare the difference of chemical components before and after processing. METHODS Using appearance score, the contents of gallic acid, 5-hydroxymethylfurfural (5-HMF), sennoside A+sennoside B, combined anthraquinone and free anthraquinone as indexes, analytic hierarchy process (AHP)-entropy weight method was used to calculate the comprehensive score of evaluation indicators; the orthogonal experiment was designed to optimize the processing technology of simmering R. palmatum with fire temperature, simmering time, paper layer number and paper wrapping time as factors; validation test was conducted. The changes in the contents of five anthraquinones (aloe-emodin, rhein, emodin, chrysophanol, physcion), five anthraquinone glycosides (barbaloin, rheinoside, rhubarb glycoside, emodin glycoside, and emodin methyl ether glycoside), two sennosides (sennoside A, sennoside B), gallic acid and 5-HMF were compared between simmered R. palmatum prepared by optimized technology and R. palmatum. RESULTS The optimal processing conditions of R. palmatum was as follows: each 80 g R. palmatum was wrapped with a layer of wet paper for 0.5 h, simmered on high heat for 20 min and then simmered at 140 ℃, the total simmering time was 2.5 h. The average comprehensive score of 3 validation tests was 94.10 (RSD<1.0%). After simmering, the contents of five anthraquinones and two sennosides were decreased significantly, while those of 5 free anthraquinones and gallic acid were increased to different extents; a new component 5-HMF was formed. CONCLUSIONS This study successfully optimizes the simmering technology of R. palmatum. There is a significant difference in the chemical components before and after processing, which can explain that simmering technology slows down the relase of R. palmatum and beneficiate it.
5.Effect and Mechanism of Wulingsan Decoction in Protecting Blood Brain Barrier and Ameliorating Cerebral Edema after Intracerebral Hemorrhage in Mice
Damei TAO ; Huihong LI ; Xiaoqing ZHENG ; Yunfei DENG ; Wei WEI ; Xiehua XUE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):1-9
ObjectiveTo study the effect of Wulingsan on cerebral edema after intracerebral hemorrhage (ICH) in mice and explore the treatment mechanism. MethodsThe mouse model of ICH was established by injection of collagenase into the caudate nucleus. Mice were randomly assigned into the following groups: sham, ICH, intervention before modeling with low-dose and high-dose (3.69, 11.07 g·kg-1, respectively) Wulingsan, and intervention after modeling with high-dose Wulingsan. The modified neurological severity score (mNSS) was recorded, and the small animal MRI T2 sequential scanning was performed to measure the volume of cerebral hemorrhage after the modeling of ICH in each group. The Y-maze test, open field test, and Morris water maze test were conducted to evaluate the neurological behaviors of mice in each group. Hematoxylin-eosin staining was employed to observe the pathological changes in the brain tissue. Immunohistochemistry was employed to observe the expression of aquaporin 4 (AQP4), neuronal nuclei (NeuN), and glial fibrillary acidic protein (GFAP) in the brain tissue. Western blot was employed to determine the protein levels of AQP4, Claudin-5, and zonula occludens-1 (ZO-1) in the hematoma area. ResultsCompared with the sham group, the ICH group showed increases in the mNSS, the cerebral hemorrhage volume, and the escape latency in the Morris water maze test (P<0.01), decreases in the times of touching the platform and times of entering the quadrant where the platform was located in the Morris water maze test, and reductions in the spontaneous alternation rate in the Y-maze test and the ratio of distance of center travel to total travel distance in the open field test (P<0.01). Moreover, pathological changes such as cell disarrangement, cell space enlargement, and cell swelling were observed in the ICH group. Immunohistochemistry results showed that the ICH group had higher proportions of AQP4- and GFAP-positive cells and lower proportion of NeuN-positive cells than the sham group (P<0.01). Compared with the sham group, the ICH group showed an up-regulated protein level of AQP4 and down-regulated protein levels of Claudin-5 and ZO-1 (P<0.01). Compared with the ICH group, the intervention with Wulingsan decreased the mNSS, the volume of cerebral hemorrhage, and the escape latency in the Morris water maze test (P<0.05, P<0.01), while increasing the times of touching the platform and times of entering the quadrant where the platform was located in the Morris water maze test, the spontaneous alternation rate in the Y-maze test, and the ratio of distance of center travel to total travel distance in the open field test (P<0.05, P<0.01). Furthermore, the intervention with Wulingsan alleviated the pathological changes in the brain tissue after ICH, decreased the proportion of AQP4- and GFAP-positive cells (P<0.01), increased the proportion of NeuN-positive cells (P<0.01), down-regulated the protein level of AQP4 (P<0.01), and up-regulated the protein levels of Claudin-5 and ZO-1 (P<0.01). ConclusionThe intervention with Wulingsan could reduce the neural function score and the cerebral hemorrhage volume, up-regulate the expression of Claudin-5 and ZO-1, and down-regulate the expression of AQP4 to ameliorate the neurological function defect and cerebral edema after ICH, thereby protecting the brain.
6.Effect of refractive status before small incision lenticule extraction surgery on postoperative accommodative function
Meiluo ZHANG ; Chunyu TIAN ; Qinghua YANG ; Liexi JIA ; Hongtao ZHANG ; Manmei LI ; Zhengqing DU ; Zhuo ZENG ; Xue WANG ; Wei ZHANG
International Eye Science 2025;25(2):323-327
AIM: To investigate the abnormal conditions and change patterns of accommodative facility in patients with different refractive states before and after small incision lenticule extraction(SMILE)surgery.METHODS:A prospective clinical cohort study was conducted. A total of 59 patients(118 eyes)who underwent SMILE surgery and had visual function files established in our hospital from June to December 2023 were randomly selected, including 37 males and 22 females, aged 18-35 years(with an average age of 25.19±5.65 years). According to the preoperative spherical equivalent(SE), they were divided into two groups: the low-to-moderate myopia group(SE≥-6.00 DS)with 40 patients(80 eyes), and the high myopia group(SE<-6.00 DS)with 19 patients(38 eyes). The monocular and binocular accommodative facility before surgery and at 1 wk and 1 mo after surgery were compared, and the changes in accommodative facility before and after SMILE surgery in the two groups of patients were analyzed.RESULTS:All surgeries were completed successfully. In the low-to-moderate myopia group, 33 cases(66 eyes)completed the 1-month follow-up after surgery, with a loss to follow-up rate of 17.5%(7/40). In the high myopia group, 15 patients(30 eyes)completed the 1-month follow-up after surgery, with a loss to follow-up rate of 21.1%(4/19). After SMILE surgery, the uncorrected visual acuity and SE of both low-to-moderate myopia and high myopia were significantly improved(all P<0.05). The accommodative facility of the right eyes in all the patients at 1 mo after surgery was better than that before surgery and at 1 wk after surgery(P=0.002, 0.006), the accommodative facility of the left eyes was significantly increased at 1 mo after surgery than that at 1 wk after surgery(P=0.005), and the binocular accommodative facility at 1 mo after surgery was significantly increased compared with that before surgery(P<0.017). Furthermore, there were statistical significance in accommodative facility of the right eyes in the low-to-moderate group at 1 mo compared with that before surgery and at 1 wk after surgery(P=0.011, 0.004); it was significantly increased in the left eyes at 1 mo after surgery compared with that at 1 wk after surgery(P=0.001), and binocular accommodative facility at 1 mo after surgery was significantly better than that before surgery(P<0.001). Furthermore, there was no statistical significance in the right, left and binocular accommodative facility of patients in the high myopia group(all P>0.017).CONCLUSION: After SMILE surgery, the monocular accommodative facility shows a transient decrease and then exceeds the preoperative level at 1 mo after surgery, and the binocular accommodative facility gradually improves after surgery. SMILE surgery has a positive impact on the monocular and binocular accommodative facility in patients with low-to-moderate myopia, but has no significant impact on the accommodative facility in patients with high myopia. It is of clinical significance to strengthen the detection of monocular and binocular accommodative facility before and after SMILE surgery.
7.Mechanism of action of bile-gut axis in the development and progression of intrahepatic cholangiocarcinoma
Xue YU ; Tianhao SHEN ; Cheng ZHOU ; Yu LIU ; Wei LI ; Tinghui JIANG ; Yongqiang ZHU ; Yan LIU
Journal of Clinical Hepatology 2025;41(3):588-593
Intrahepatic cholangiocarcinoma is a malignant tumor with an extremely poor prognosis, and its pathogenesis is complex and remains unclear. In recent years, more and more studies have focused on the role of bile-gut axis in the development and progression of intrahepatic cholangiocarcinoma. Bile-gut axis refers to the complex interaction between bile and gut microbiota, including bile salt metabolism, dynamic changes of microbiota, inflammatory response, and immune system regulation. This article elaborates on the potential mechanisms of bile-gut axis in intrahepatic cholangiocarcinoma, especially gut microbiota dysbiosis, abnormal bile salt metabolism, chronic inflammatory response, and immune system interaction, this article aims to provide new perspectives and possible therapeutic targets for future research and promote the early diagnosis and effective treatment of intrahepatic cholangiocarcinoma.
8.The mechanism of Laggerae Herba in improving chronic heart failure by inhibiting ferroptosis through the Nrf2/SLC7A11/GPX4 signaling pathway
Jinling XIAO ; Kai HUANG ; Xiaoqi WEI ; Xinyi FAN ; Wangjing CHAI ; Jing HAN ; Kuo GAO ; Xue YU ; Fanghe LI ; Shuzhen GUO
Journal of Beijing University of Traditional Chinese Medicine 2025;48(3):343-353
Objective:
To investigate the role and mechanism of the heat-clearing and detoxifying drug Laggerae Herba in regulating the nuclear factor-erythroid 2-related factor-2(Nrf2)/solute carrier family 7 member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) signaling pathway to inhibit ferroptosis and improve chronic heart failure induced by transverse aortic arch constriction in mice.
Methods:
Twenty-four male ICR mice were divided into the sham (n=6) and transverse aortic arch constriction groups (n=18) according to the random number table method. The transverse aortic arch constriction group underwent transverse aortic constriction surgery to establish models. After modeling, the transverse aortic arch constriction group was further divided into the model, captopril, and Laggerae Herba groups according to the random number table method, with six mice per group. The captopril (15 mg/kg) and Laggerae Herba groups (1.95 g/kg) received the corresponding drugs by gavage, whereas the sham operation and model groups were administered the same volume of ultrapure water by gavage once a day for four consecutive weeks. After treatment, the cardiac function indexes of mice in each group were detected using ultrasound. The heart mass and tibia length were measured to calculate the ratio of heart weight to tibia length. Hematoxylin and eosin staining were used to observe the pathological changes in myocardial tissue. Masson staining was used to observe the degree of myocardial fibrosis. Wheat germ agglutinin staining was used to observe the degree of myocardial cell hypertrophy. Prussian blue staining was used to observe the iron deposition in myocardial tissue. An enzyme-linked immunosorbent assay was used to detect the amino-terminal pro-brain natriuretic peptide (NT-proBNP) and glutathione (GSH) contents in mice serum. Colorimetry was used to detect the malondialdehyde (MDA) content in mice serum. Western blotting was used to detect the Nrf2, GPX4, SLC7A11, and ferritin heavy chain 1 (FTH1) protein expressions in mice cardiac tissue.
Results:
Compared with the sham group, in the model group, the ejection fraction (EF) and fractional shortening (FS) of mice decreased, the left ventricular end-systolic volume (LVESV) and left ventricular end-systolic diameter (LVESD) increased, the left ventricular anterior wall end-systolic thickness (LVAWs) and left ventricular posterior wall end-systolic thickness (LVPWs) decreased, the ratio of heart weight to tibia length increased, the myocardial tissue morphology changed, myocardial fibrosis increased, the cross-sectional area of myocardial cells increased, iron deposition appeared in myocardial tissue, the serum NT-proBNP and MDA levels increased, the GSH level decreased, and Nrf2, GPX4, SLC7A11, and FTH1 protein expressions in cardiac tissue decreased (P<0.05). Compared with the model group, in the captopril and Laggerae Herba groups, the EF, FS, and LVAWs increased, the LVESV and LVESD decreased, the ratio of heart weight to tibia length decreased, the myocardial cells were arranged neatly, the degree of myocardial fibrosis decreased, the cross-sectional area of myocardial cells decreased, the serum NT-proBNP level decreased, and the GSH level increased. Compared with the model group, the LVPWs increased, the iron deposition in myocardial tissue decreased, the serum MDA level decreased, and Nrf2, GPX4, SLC7A11, and FTH1 protein expressions in cardiac tissue increased (P<0.05) in the Laggerae Herba group.
Conclusion
Laggerae Herba improves the cardiac function of mice with chronic heart failure caused by transverse aortic arch constriction, reduces the pathological remodeling of the heart, and reduces fibrosis. Its mechanism may be related to Nrf2/SLC7A11/GPX4 pathway-mediated ferroptosis.
9.Improvement effect and mechanism of Wuling San on TGF-β1-induced fibrosis, inflammation, and oxidative stress damage in HK-2 cells.
Jun WU ; Xue-Ning JING ; Fan-Wei MENG ; Xiao-Ni KONG ; Jiu-Wang MIAO ; Cai-Xia ZHANG ; Hai-Lun LI ; Yun HAN
China Journal of Chinese Materia Medica 2025;50(5):1247-1254
This study investigated the effect of Wuling San on transforming growth factor-β1(TGF-β1)-induced fibrosis, inflammation, and oxidative stress in human renal tubular epithelial cells(HK-2) and its mechanism of antioxidant stress injury. HK-2 cells were cultured in vitro and divided into a control group, a TGF-β1 model group, and three treatment groups receiving Wuling San-containing serum at low(2.5%), medium(5.0%), and high(10.0%) doses. TGF-β1 was used to establish the model in all groups except the control group. CCK-8 was used to analyze the effect of different concentrations of Wuling San on the activity of HK-2 cells with or without TGF-β1 stimulation. The expression of key fibrosis molecules, including actin alpha 2(Acta2), collagen type Ⅰ alpha 1 chain(Col1α1), collagen type Ⅲ alpha 1 chain(Col3α1), TIMP metallopeptidase inhibitor 1(Timp1), and fibronectin 1(Fn1), was detected using qPCR. The expression levels of inflammatory cytokines, including tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), interleukin-6(IL-6), interleukin-8(IL-8), and interleukin-4(IL-4), were measured using ELISA kits. Glutathione peroxidase(GSH-Px), malondialdehyde(MDA), catalase(CAT), and superoxide dismutase(SOD) biochemical kits were used to analyze the effect of Wuling San on TGF-β1-induced oxidative stress injury in HK-2 cells, and the expression of nuclear factor E2-related factor 2(Nrf2), heme oxygenase 1(HO-1), and NAD(P)H quinone oxidoreductase 1(NQO1) was analyzed by qPCR and immunofluorescence. The CCK-8 results indicated that the optimal administration concentrations of Wuling San were 2.5%, 5.0%, and 10.0%. Compared with the control group, the TGF-β1 model group showed significantly increased levels of key fibrosis molecules(Acta2, Col1α1, Col3α1, Timp1, and Fn1) and inflammatory cytokines(TNF-α, IL-1β, IL-6, IL-8, and IL-4). In contrast, the Wuling San administration groups were able to dose-dependently inhibit the expression levels of key fibrosis molecules and inflammatory cytokines compared with the TGF-β1 model group. Wuling San significantly increased the activities of GSH-Px, CAT, and SOD enzymes in TGF-β1-stimulated HK-2 cells and significantly inhibited the level of MDA. Furthermore, compared with the control group, the TGF-β1 model group exhibited a significant reduction in the expression of Nrf2, HO-1, and NQO1 genes and proteins. After Wuling San intervention, the expression of Nrf2, HO-1, and NQO1 genes and proteins was significantly increased. Correlation analysis showed that antioxidant stress enzymes(GSH-Px, CAT, and SOD) and Nrf2 signaling were significantly negatively correlated with key fibrosis molecules and inflammatory cytokines in the TGF-β1-stimulated HK-2 cell model. In conclusion, Wuling San can inhibit TGF-β1-induced fibrosis in HK-2 cells by activating the Nrf2 signaling pathway, improving oxidative stress injury, and reducing inflammation.
Humans
;
Oxidative Stress/drug effects*
;
Transforming Growth Factor beta1/metabolism*
;
Fibrosis/genetics*
;
Cell Line
;
Drugs, Chinese Herbal/pharmacology*
;
Epithelial Cells/immunology*
;
Inflammation/metabolism*
10.Tanreqing Capsules protect lung and gut of mice infected with influenza virus via "lung-gut axis".
Nai-Fan DUAN ; Yuan-Yuan YU ; Yu-Rong HE ; Feng CHEN ; Lin-Qiong ZHOU ; Ya-Lan LI ; Shi-Qi SUN ; Yan XUE ; Xing ZHANG ; Gui-Hua XU ; Yue-Juan ZHENG ; Wei ZHANG
China Journal of Chinese Materia Medica 2025;50(8):2270-2281
This study aims to explore the mechanism of lung and gut protection by Tanreqing Capsules on the mice infected with influenza virus based on "the lung-gut axis". A total of 110 C57BL/6J mice were randomized into control group, model group, oseltamivir group, and low-and high-dose Tanreqing Capsules groups. Ten mice in each group underwent body weight protection experiments, and the remaining 12 mice underwent experiments for mechanism exploration. Mice were infected with influenza virus A/Puerto Rico/08/1934(PR8) via nasal inhalation for the modeling. The lung tissue was collected on day 3 after gavage, and the lung tissue, colon tissue, and feces were collected on day 7 after gavage for subsequent testing. The results showed that Tanreqing Capsules alleviated the body weight reduction and increased the survival rate caused by PR8 infection. Compared with model group, Tanreqing Capsules can alleviate the lung injury by reducing the lung index, alleviating inflammation and edema in the lung tissue, down-regulating viral gene expression at the late stage of infection, reducing the percentage of neutrophils, and increasing the percentage of T cells. Tanreqing Capsules relieved the gut injury by restoring the colon length, increasing intestinal lumen mucin secretion, alleviating intestinal inflammation, and reducing goblet cell destruction. The gut microbiota analysis showed that Tanreqing Capsules increased species diversity compared with model group. At the phylum level, Tanreqing Capsules significantly increased the abundance of Firmicutes and Actinobacteria, while reducing the abundance of Bacteroidota and Proteobacteria to maintain gut microbiota balance. At the genus level, Tanreqing Capsules significantly increased the abundance of unclassified_f_Lachnospiraceae while reducing the abundance of Bacteroides, Eubacterium, and Phocaeicola to maintain gut microbiota balance. In conclusion, Tanreqing Capsules can alleviate mouse lung and gut injury caused by influenza virus infection and restore the balance of gut microbiota. Treating influenza from the lung and gut can provide new ideas for clinical practice.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Lung/metabolism*
;
Mice, Inbred C57BL
;
Capsules
;
Orthomyxoviridae Infections/virology*
;
Gastrointestinal Microbiome/drug effects*
;
Male
;
Humans
;
Female
;
Influenza A virus/physiology*
;
Influenza, Human/virology*


Result Analysis
Print
Save
E-mail