1.Optimization of simmering technology of Rheum palmatum from Menghe Medical School and the changes of chemical components after processing
Jianglin XUE ; Yuxin LIU ; Pei ZHONG ; Chanming LIU ; Tulin LU ; Lin LI ; Xiaojing YAN ; Yueqin ZHU ; Feng HUA ; Wei HUANG
China Pharmacy 2025;36(1):44-50
OBJECTIVE To optimize the simmering technology of Rheum palmatum from Menghe Medical School and compare the difference of chemical components before and after processing. METHODS Using appearance score, the contents of gallic acid, 5-hydroxymethylfurfural (5-HMF), sennoside A+sennoside B, combined anthraquinone and free anthraquinone as indexes, analytic hierarchy process (AHP)-entropy weight method was used to calculate the comprehensive score of evaluation indicators; the orthogonal experiment was designed to optimize the processing technology of simmering R. palmatum with fire temperature, simmering time, paper layer number and paper wrapping time as factors; validation test was conducted. The changes in the contents of five anthraquinones (aloe-emodin, rhein, emodin, chrysophanol, physcion), five anthraquinone glycosides (barbaloin, rheinoside, rhubarb glycoside, emodin glycoside, and emodin methyl ether glycoside), two sennosides (sennoside A, sennoside B), gallic acid and 5-HMF were compared between simmered R. palmatum prepared by optimized technology and R. palmatum. RESULTS The optimal processing conditions of R. palmatum was as follows: each 80 g R. palmatum was wrapped with a layer of wet paper for 0.5 h, simmered on high heat for 20 min and then simmered at 140 ℃, the total simmering time was 2.5 h. The average comprehensive score of 3 validation tests was 94.10 (RSD<1.0%). After simmering, the contents of five anthraquinones and two sennosides were decreased significantly, while those of 5 free anthraquinones and gallic acid were increased to different extents; a new component 5-HMF was formed. CONCLUSIONS This study successfully optimizes the simmering technology of R. palmatum. There is a significant difference in the chemical components before and after processing, which can explain that simmering technology slows down the relase of R. palmatum and beneficiate it.
2.Immunotherapy for Lung Cancer
Pei-Yang LI ; Feng-Qi LI ; Xiao-Jun HOU ; Xue-Ren LI ; Xin MU ; Hui-Min LIU ; Shou-Chun PENG
Progress in Biochemistry and Biophysics 2025;52(8):1998-2017
Lung cancer is the most common malignant tumor worldwide, ranking first in both incidence and mortality rates. According to the latest statistics from the International Agency for Research on Cancer (IARC), approximately 2.5 million new cases and around 1.8 million deaths from lung cancer occurred in 2022, placing a tremendous burden on global healthcare systems. The high mortality rate of lung cancer is closely linked to its subtle early symptoms, which often lead to diagnosis at advanced stages. This not only complicates treatment but also results in substantial economic losses. Current treatment options for lung cancer include surgery, radiotherapy, chemotherapy, targeted drug therapy, and immunotherapy. Among these, immunotherapy has emerged as the most groundbreaking advancement in recent years, owing to its unique antitumor mechanisms and impressive clinical benefits. Unlike traditional therapies such as radiotherapy and chemotherapy, immunotherapy activates or enhances the patient’s immune system to recognize and eliminate tumor cells. It offers advantages such as more durable therapeutic effects and relatively fewer toxic side effects. The main approaches to lung cancer immunotherapy include immune checkpoint inhibitors, tumor-specific antigen-targeted therapies, adoptive cell therapies, cancer vaccines, and oncolytic virus therapies. Among these, immune checkpoint inhibitors and tumor-specific antigen-targeted therapies have received approval from the U.S. Food and Drug Administration (FDA) for clinical use in lung cancer, significantly improving outcomes for patients with advanced non-small cell lung cancer. Although other immunotherapy strategies are still in clinical trials, they show great potential in improving treatment precision and efficacy. This article systematically reviews the latest research progress in lung cancer immunotherapy, including the development of novel immune checkpoint molecules, optimization of treatment strategies, identification of predictive biomarkers, and findings from recent clinical trials. It also discusses the current challenges in the field and outlines future directions, such as the development of next-generation immunotherapeutic agents, exploration of more effective combination regimens, and the establishment of precise efficacy prediction systems. The aim is to provide a valuable reference for the continued advancement of lung cancer immunotherapy.
3.Immunotherapy and radiotherapy: An effective combination in cancer treatment.
Xuewei LI ; Chen WANG ; Haiou YANG ; Wenhui XUE ; Yaqian DING ; Na WU ; Beibei PEI ; Xiaoyan MA ; Wenhui YANG
Chinese Medical Journal 2025;138(20):2527-2539
Immunotherapy has been widely used in cancer treatment in recent years and functions by stimulating the immune system to kill tumor cells. Radiation therapy (RT) uses radiation to induce DNA damage and kill tumor cells. However, this activates the body's immune system, promoting the release of tumor-related antigens from inactive dendritic cells, which stimulates the recurrence and metastasis of tumors in immune system tissues. The combination of RT and immunotherapy has been increasingly evaluated in recent years, with studies confirming the synergistic effect of the two antitumor therapies. Particularly, the combination of RT by dose adjustment with different immunotherapies has positive implications on antitumor immunity as well as disease prognosis compared with respective monotherapies. This review summarizes the current research status, progress, and prospects of RT combined with immunotherapy in cancer treatment. It additionally discusses the prevalent concerns regarding the dose, time window, and toxicity of this combination therapy.
Humans
;
Neoplasms/radiotherapy*
;
Immunotherapy/methods*
;
Combined Modality Therapy
;
Radiotherapy/methods*
4.Chemical and pharmacological research progress on Mongolian folk medicine Syringa pinnatifolia.
Kun GAO ; Chang-Xin LIU ; Jia-Qi CHEN ; Jing-Jing SUN ; Xiao-Juan LI ; Zhi-Qiang HUANG ; Ye ZHANG ; Pei-Feng XUE ; Su-Yi-le CHEN ; Xin DONG ; Xing-Yun CHAI
China Journal of Chinese Materia Medica 2025;50(8):2080-2089
Syringa pinnatifolia, belonging to the family Oleaceae, is a species endemic to China. It is predominantly distributed in the Helan Mountains region of Inner Mongolia and Ningxia of China. The peeled roots, stems, and thick branches have been used as a distinctive Mongolian medicinal material known as "Shan-chen-xiang", which has effects such as suppressing "khii", clearing heat, and relieving pain and is employed for the treatment of cardiovascular and pulmonary diseases and joint pain. Over the past five years, significant increase was achieved in research on chemical constituents and pharmacological effects. There were a total of 130 new constituents reported, covering sesquiterpenoids, lignans, and alkaloids. Its effects of anti-myocardial ischemia, anti-cerebral ischemia/reperfusion, sedation, and analgesia were revealed, and the mechanisms of agarwood formation were also investigated. To better understand its medical value and potential of clinical application, this review updates the research progress in recent five years focusing on the chemical constituents and pharmacological effects of S. pinnatifolia, providing reference for subsequent research on active ingredient and support for its innovative application in modern medicine system.
Medicine, Mongolian Traditional
;
Humans
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Syringa/chemistry*
5.Curative Efficacy Analysis of Allogeneic Hematopoietic Stem Cell Transplantation for Acute Myeloid Leukemia with ASXL1 Mutation.
Ya-Jie SHI ; Xin-Sheng XIE ; Zhong-Xing JIANG ; Ding-Ming WAN ; Rong GUO ; Tao LI ; Xia ZHANG ; Xue LI ; Yu-Pei ZHANG ; Yue SU
Journal of Experimental Hematology 2025;33(3):720-725
OBJECTIVE:
To explore the efficacy and apoptosis of allogeneic hematopoietic stem cell transplantation (allo-HSCT) in the treatment of acute myeloid leukemia (AML) with ASXL1 mutation.
METHODS:
The clinical data of 80 AML patients with ASXL1 mutation treated in our hospital from January 2019 to December 2021 were retrospectively analyzed. The clinical characteristics of the patients were summarized, and the therapeutic effect and prognostic factors of allo-HSCT for the patients were analyzed.
RESULTS:
Among the 80 patients, 38 were males and 42 were females, and the median age was 39(14-65) years. There were 17 patients in low-risk group, 25 patients in medium-risk group and 38 patients in high-risk group. ASXL1 mutation co-occurred with many other gene mutations, and the frequent mutated genes were TET2 (71.25%), NRAS (18.75%), DNMT3A (16.25%), NPM1 (15.00%), CEBPA (13.75%). Among medium and high-risk patients, 29 underwent allo-HSCT, while 34 received chemotherapy. The 2-year overall survival (OS) rate and disease-free survival (DFS) rate of the allo-HSCT group were 72.4% and 70.2%, while those of the chemotherapy group were 44.1% and 34.0%, respectively. The statistical analysis showed significant differences between the two groups (both P < 0.01). Multivariate analysis showed that age at transplantation >50- years and occurrence of acute graft-versus-host disease after transplantation were poor prognostic factors for OS and DFS in transplantation patients.
CONCLUSION
Allo-HSCT can improve the prognosis of AML patients with ASXL1 mutation.
Humans
;
Leukemia, Myeloid, Acute/therapy*
;
Hematopoietic Stem Cell Transplantation
;
Female
;
Male
;
Middle Aged
;
Mutation
;
Adult
;
Repressor Proteins/genetics*
;
Adolescent
;
Retrospective Studies
;
Aged
;
Nucleophosmin
;
Young Adult
;
Transplantation, Homologous
;
Prognosis
;
Survival Rate
6.Erratum: Author correction to "Up-regulation of glyclipid transfer protein by bicyclol causes spontaneous restriction of hepatitis C virus replication" Acta Pharm Sin B 9 (2019) 769-781.
Menghao HUANG ; Hu LI ; Rong XUE ; Jianrui LI ; Lihua WANG ; Junjun CHENG ; Zhouyi WU ; Wenjing LI ; Jinhua CHEN ; Xiaoqin LV ; Qiang LI ; Pei LAN ; Limin ZHAO ; Yongfeng YANG ; Zonggen PENG ; Jiandong JIANG
Acta Pharmaceutica Sinica B 2025;15(3):1721-1721
[This corrects the article DOI: 10.1016/j.apsb.2019.01.013.].
8.A Health Economic Evaluation of an Artificial Intelligence-assisted Prescription Review System in a Real-world Setting in China.
Di WU ; Ying Peng QIU ; Li Wei SHI ; Ke Jun LIU ; Xue Qing TIAN ; Ping REN ; Mao YOU ; Jun Rui PEI ; Wen Qi FU ; Yue XIAO
Biomedical and Environmental Sciences 2025;38(3):385-388
9.Chemical derivatization strategies for enhancing the HPLC analytical performance of natural active triterpenoids
Huang XIAO-FENG ; Xue YING ; Yong LI ; Wang TIAN-TIAN ; Luo PEI ; Qing LIN-SEN
Journal of Pharmaceutical Analysis 2024;14(3):295-307
Triterpenoids widely exist in nature,displaying a variety of pharmacological activities.Determining triterpenoids in different matrices,especially in biological samples holds great significance.High-performance liquid chromatography(HPLC)has become the predominant method for triterpenoids analysis due to its exceptional analytical performance.However,due to the structural similarities among botanical samples,achieving effective separation of each triterpenoid proves challenging,necessitating significant improvements in analytical methods.Additionally,triterpenoids are characterized by a lack of ultraviolet(UV)absorption groups and chromophores,along with low ionization efficiency in mass spectrometry.Consequently,routine HPLC analysis suffers from poor sensitivity.Chemical derivatization emerges as an indispensable technique in HPLC analysis to enhance its performance.Considering the structural characteristics of triterpenoids,various derivatization reagents such as acid chlorides,rho-damines,isocyanates,sulfonic esters,and amines have been employed for the derivatization analysis of triterpenoids.This review comprehensively summarized the research progress made in derivatization strategies for HPLC detection of triterpenoids.Moreover,the limitations and challenges encountered in previous studies are discussed,and future research directions are proposed to develop more effective derivatization methods.
10.Effect of exercise intensity on body components and CPET indexes of MS patients:A comparison of two prescribed programs
Ruojiang LIU ; Jinmei QIN ; Weizhen XUE ; Zhi LI ; Feng WANG ; Xiang ZHANG ; Hongyu LIU ; Zhiqiang PEI
The Journal of Practical Medicine 2024;40(19):2678-2684
Objective To compare the effects of two exercise intensities on metabolic syndrome(MS).Methods Forty-nine MS patients hospitalized in Taiyuan Central Hospital from December,2022 to January 2024 were selected and randomly divided into two groups:a standard group(n=24)and individual group(n=25).All patients underwent cardiopulmonary exercise test(CPET)before and after treatment,collecting major indexes including body parameter,body component,and metabolic indicator for prescribing exercise programs.The standard group was trained with exercise intensity prescribed on heart rate reserve,while the individual group received the exercise with intensity prescribed on ventilatory threshold.Both groups received equal energy consumption exercise intervention with the same exercise frequency for 12 weeks.Results The two groups demonstrated significant improvements in waist circumference(WC),body mass index(BMI),body fat related indexes,and systolic blood pressure after intervention(P<0.05).The individual group showed significant improvements inWC,BMI and body fat related indexes as compared to the standard group(P<0.05).Both groups showed significant improvements in peak oxygen uptake,(PeakVO2),peak load power(Peak WR),peak metabolic equivalent(PeakMets),and peak respiratory exchange ratio(Peak RER)after intervention(P<0.05).The individual group presented significant improvements in peak heart rate(HRpeak),peak oxygen pulse(Peak VO2/HR),and maximum voluntary ventilation(MVV)(P<0.05)after intervention.Before intervention,the standard group demonstrated significantly higher levels in PeakVO2 and Peak MET compared to the individual group(P<0.05),but after intervention the two groups showed no significant differences in the two indexes.After the intervention,the individual group demonstrated insignificant improvements in all indexes compared to the standard group(P>0.05).Conclusions Both exercise prescriptions based on CPET can effectively improve the health-related indicators of MS patients on condition of moderate exercise intensity.However,the program prescribed based on individualized ventilatory threshold shows superiority to the program prescribed based on maximum physiological value in improving these indicators.

Result Analysis
Print
Save
E-mail