1.The Role of NEAT1 in Bone and Cartilage Metabolism and Bone Diseases
Rui-Ming WEN ; Rui-Qi HUANG ; Yi-Xing CHANG ; Ke XU ; Xue-Jie YI
Progress in Biochemistry and Biophysics 2025;52(4):930-945
In the process of maintaining the steady state of bone tissue, the transcription network and signal pathway of the body play a vital role. These complex regulatory mechanisms need precise coordination to ensure the balance between bone formation and bone absorption. Once this balance is broken, it may lead to pathological changes of bone and cartilage, and then lead to various bone diseases. Therefore, it is of great significance to understand these regulatory mechanisms for the prevention and treatment of bone diseases. In recent years, with the deepening of research, more and more lncRNA has been found to be closely related to bone health. Among them, nuclear paraspeckle assembly transcript 1 (NEAT1), as an extremely abundant RNA molecule in mammalian nuclei, has attracted extensive attention. NEAT1 is mainly transcribed from a specific site in human chromosome 11 by RNA polymerase II (RNaseP), which can form two different subtypes NEAT1_1 and NEAT1_2. These two subtypes are different in intracellular distribution and function, but they participate in many biological processes together. Studies have shown that NEAT1 plays a specific role in the process of cell growth and stress response. For example, it can regulate the development of osteoblasts (OB), osteoclasts (OC) and chondrocytes by balancing the differentiation of bone marrow mesenchymal stem cells (BMSCs), thus maintaining the steady state of bone metabolism. This discovery reveals the important role of NEAT1 in bone development and remodeling. In addition, NEAT1 is closely related to a variety of bone diseases. In patients with bone diseases such as osteoporosis (OP), osteoarthritis (OA) and osteosarcoma (OS), the expression level of NEAT1 is different. These differential expressions may be closely related to the pathogenesis and progression of bone diseases. By regulating the level of NEAT1, it can affect a variety of signal transduction pathways, and then affect the development of bone diseases. For example, some studies show that by regulating the expression level of NEAT1, the activity of osteoclasts can be inhibited, and the proliferation and differentiation of osteoblasts can be promoted, thus improving the symptoms of osteoporosis. It is worth noting that NEAT1 can also be used as a key sensor for the prevention and treatment of bone diseases. When exercising or receiving some natural products, the expression level of NEAT1 will change, thus reflecting the response of bones to external stimuli. This feature makes NEAT1 an important target for studying the prevention and treatment strategies of bone diseases. However, although the role of NEAT1 in bone biology and bone diseases has been initially recognized, its specific mechanism and regulatory relationship are still controversial. For example, the expression level, mode of action and interaction with other molecules of NEAT1 in different bone diseases still need further in-depth study. This paper reviews the role of NEAT1 in maintaining bone and cartilage metabolism, and discusses its expression and function in various bone diseases. By combing the existing research results and controversial points, this paper aims to provide new perspectives and ideas for the prevention and treatment of bone diseases, and provide useful reference and enlightenment for future research.
2.Protective value of radiation protection safety education for patients with differentiated thyroid carcinoma treated with iodine-131
Wen WANG ; Aomei ZHAO ; Hongmei LIANG ; Jie BAI ; Qi WANG ; Yiqian LIANG ; Jianjun XUE
China Occupational Medicine 2025;52(3):313-317
Objective To evaluate the protective effect of radiation protection safety education (RPSE) on patients with differentiated thyroid carcinoma (DTC) undergoing iodine-131 (131I) treatment. Methods The DTC patients who undergo 131I treatment were divided into the control group and the RPSE group using the convenience sampling method, with 142 patients in each group. Patients in the control group received routine health education, while the RPSE group received routine health education combined with RPSE. Dose equivalent rate (DER) on pillows, bed sheets, quilt covers, and household waste of patients were compared between the two groups upon discharge. Results The median (M) DERs of patients' pillows, bed sheets, quilt covers and household waste were 3.86, 3.63, 3.91 and 56.59 times higher in the control group compared with the environmental background level, respectively. The M DERs of patients' pillows, bed sheets, quilt covers were 2.23, 2.18, and 2.55 times higher in the RPSE group compared with the environmental background level, while the M DER of household waste was equivalent to the environmental background level. The DERs of patients' pillows, bed sheets, quilt covers, and household waste in the RPSE group were significantly lower than those in the control group (all P<0.001). The DERs of the above four items were lower in both male and female patients in RPSE group compared with same-gender patients in the control group (all P<0.001). The patients' DERs of the above indicators had no significant difference among different gender in both control group and RPSE group (all P>0.05), except for higher DER of household waste in female patients than that of male patients in the control group (P<0.05). There were no significant differences in the DERs of pillows, bed sheets, quilt covers, and household waste across subgroups, where patients received different treatment doses, of both the control group and the RPSE group (all P>0.05). Conclusion RPSE for DTC patients treated with 131I, reduces the DERs of pillows, bed sheets, quilt covers, and particularly household waste.
3.The protective effect of Jujing formula on tretina of mice with dry age-related macular degeneration
Cheng-Cheng QI ; Ruo-Ying FAN ; Xue-Sen WANG ; Shu-Lan SU ; Yue ZHU ; Sheng GUO ; Hong-Jie KANG ; Xue-Yi ZHOU ; Jin-Ao DUAN
Chinese Pharmacological Bulletin 2024;40(7):1358-1367
Aim To investigate the protective effect of Jujing formula on retina of mice with dry age-related macular degeneration(AMD).Methods The mouse model of dry AMD was induced by intraperitoneal in-jection of sodium iodate,and the prognosis was given to the Jujing formula.Retinal thickness was detected by optical coherence tomography(OCT),the retinal morphological changes were observed by hematoxylin-eosin(HE)staining,and the apoptosis of retinal cells was detected by in situ terminal transferase labeling(TUNEL)staining.Combination of tumor necrosis fac-tor-α(TNF-α),interleukin-6(IL-6)and interleukin-1β(IL-1 β)in eyeballs and serum,superoxide dis-mutase(SOD),glutathione(GSH)and malondialde-hyde(MDA)were evaluated to assess the protective effects of Jujing formula on retinal injury in mice with dry AMD.Results The results of OCT,HE and TUNEL staining showed that Jujing formula significant-ly improved the retinal injury induced by sodium iodate in mice with dry AMD,increased the retinal thickness(P<0.05),reduced the apoptosis of retinal cells(P<0.01),and increased the levels of GSH,IL-6 and SOD activity in eyeballs and serum(P<0.01).The levels of TNF-α,IL-6,IL-1β and MDA were reduced(P<0.01).Conclusions Jujing formula has certain therapeutic effects on retinal injury in dry AMD,which may be related to inhibiting inflammatory response and enhancing antioxidant capacity.
4.Phenotypic and molecular characteristics of a Salmonella Grumpensis isolate from a patient with diarrhea in Shanghai,China
Wen-Qing WANG ; Wei-Chun HUANG ; Jing-Hua SU ; Shu-Qi YOU ; Ying-Jie ZHENG ; Bo-Wen YANG ; Hong HUANG ; Li-Peng HAO ; Xue-Bin XU
Chinese Journal of Zoonoses 2024;40(8):732-738
This study was aimed at studying the phenotypic and molecular characteristics of a Salmonella Grumpensis isolate from a patient with diarrhea in Shanghai,to provide evi-dence for the prevention of salmonellosis.Biochemical identifi-cation,serum agglutination testing,antimicrobial susceptibility testing,and whole genome sequencing(WGS)were performed on isolate 2023JD76.Global Salmonella Grumpensis genome sequences were searched and downloaded for serotyping predic-tion,multilocus sequence typing(MLST),prediction of anti-microbia resistance genes and virulence genes,and phylogenetic analysis of 2023JD76.The 2023JD76 strain was identified as Salmonella Grumpensis(13,23:d:1,7)with ST2060,and was susceptible to 20 antimicrobial agents.Strain 2023JD76 carried the aminoglycoside resistance gene aac(6')-Iaa and five types of virulence genes:the adhesion genes csg and rat;the secretion and transport genes sip and inv;the typhoid toxin genes cdt and plt;the invasive gene nutrient metabolism factor mgt;and the antimicrobial peptide resistance factor mig.Global S.Grumpensis strains harbored ten types of antimicrobial resistance genes whose prevalence ranged from 58.33%to 100%.The global genome sequences of S.Grumpensis were divided into two lineages.Lineage I was dominated by ST751(88.89%,16/18),and lineage Ⅱ was dominated by ST2060(89.47%,17/19).The genome sequence of strain 2023JD76 belonged to lineage Ⅱ,and was closely related to the genome sequences from human fecal and human cerebrospinal fluid.This study provides the first report of a S.Grumpensis isolate from the stool of a patient with diarrhea in China.Considerable variability in antimicrobial resistance genes was observed among genome sequences from different sources,and the strains harbored a substantial number of virulence genes.Enhanced surveillance should be emphasized to prevent a potential risk of global dissemination.
5.Analysis of key genes in the development from colon adeno-ma to carcinoma through high-throughput RNA sequencing
Jie BIAN ; Tao WANG ; Chang-Chun YE ; Gen-Wang GAO ; Chun-Hong MA ; Xue-Jun SUN ; Qi SUN
Chinese Journal of Current Advances in General Surgery 2024;27(4):286-291
Objective:To analyze and compare the difference of gene expression profiles in normal colon tissues,colon adenoma and carcinoma tissues by RNA sequencing technology,and re-veal the key genes and potential mechanisms in the development from colon adenoma to carcinoma.Methods:RNA sequencing analysis was carried out on normal colon tissues,colon adenomas and carcinoma tissues of the same patient,and differential genes that were significantly expressed in colon cancer and not significantly expressed in adenoma tissues were obtained,and the GO and KEGG function enrichment analysis was performed.Results:There are 4307 differential genes that are significantly expressed in colon cancer and not significantly expressed in adenoma.The GO and KEGG function enrichment analysis of these genes found that they were mainly enriched in bi-ological processes such as biological process regulation,cell process regulation,protein binding and cancer pathway,PI3K Akt signal pathway MAPK signal pathway.Conclusion:There are many genes involved in the development process from colon adenoma to carcinoma.These genes have the potential to become therapeutic targets for colorectal cancer,providing a new direction for fol-low-up research on colorectal cancer.
6.Effect of transcranial alternating current stimulation on cerebral perfusion in patients with Alzheimer's disease using MRI 3D-ASL
Tao WANG ; Shaozhen YAN ; Hanxiao XUE ; Hanyu XI ; Zhigang QI ; Yi TANG ; Jie LU
Chinese Journal of Geriatric Heart Brain and Vessel Diseases 2024;26(11):1315-1319
Objective To investigate the effect of transcranial alternating current stimulation(tACS)on cerebral blood flow(CBF)in patients with Alzheimer's disease(AD).Methods A ret-rospective study was conducted on 21 mild AD patients admitted in our hospital from September 2019 to April 2022.All of them received tACS treatment for 3 weeks.Mini-mental state examina-tion(MMSE),auditory verbal learning test(AVLT)and MRI were applied to obtain the data at baseline(T0),the end of the treatment(T1)and in three months after treatment(T2).Z-trans-form CBF(zCBF)was performed to reduce individual variability.The changes in MMSE and AVLT scores,as well as brain zCBF and CBF values before and after tACS treatment were ana-lyzed.Spearman correlation analysis was used to examine the relationship of zCBF and CBF with cognitive scores.Results In the AD patients,their MMSE score was significantly increased at T1 than at T0[22.00(20.00,25.00)vs 20.00(18.00,21.50),P<0.01].Based on voxel analysis,the AD patients exhibited significantly increased zCBF in the bilateral frontal and temporal cortex at T1,and in the right frontal and temporal cortex at T2 when compared with the levels at T0(P<0.05).The most pronounced increase in zCBF was observed in the right insular.Based on region of inter-est analysis,increased zCBF and CBF in the right frontal and temporal cortex at T1 were observed(P<0.05).There was a positive correlation between the change of CBF in the right frontal cortex and AVLT-recognition recall at T1(r=0.617,P=0.005)and between the change of CBF in the left frontal cortex and MMSE at T2(r=0.596,P=0.012).Conclusion MRI 3D-ASL can objec-tively evaluate the changes of CBF in AD patients after tACS treatment,and it provides a reliable imaging marker for evaluating the efficacy of tACS.
7.Discussion of the methodology and implementation steps for assessing the causality of adverse event
Hong FANG ; Shuo-Peng JIA ; Hai-Xue WANG ; Xiao-Jing PEI ; Min LIU ; An-Qi YU ; Ling-Yun ZHOU ; Fang-Fang SHI ; Shu-Jie LU ; Shu-Hang WANG ; Yue YU ; Dan-Dan CUI ; Yu TANG ; Ning LI ; Ze-Huai WEN
The Chinese Journal of Clinical Pharmacology 2024;40(2):299-304
The assessment of adverse drug events is an important basis for clinical safety evaluation and post-marketing risk control of drugs,and its causality assessment is gaining increasing attention.The existing methods for assessing the causal relationship between drugs and the occurrence of adverse reactions can be broadly classified into three categories:global introspective methods,standardized methods,and probabilistic methods.At present,there is no systematic introduction of the operational details of the various methods in the domestic literature.This paper compares representative causality assessment methods in terms of definition and concept,methodological steps,industry evaluation and advantages and disadvantages,clarifies the basic process of determining the causality of adverse drug reactions,and discusses how to further improve the adverse drug reaction monitoring and evaluation system,with a view to providing a reference for drug development and pharmacovigilance work in China.
8.Clinical trial of brexpiprazole in the treatment of adults with acute schizophrenia
Shu-Zhe ZHOU ; Liang LI ; Dong YANG ; Jin-Guo ZHAI ; Tao JIANG ; Yu-Zhong SHI ; Bin WU ; Xiang-Ping WU ; Ke-Qing LI ; Tie-Bang LIU ; Jie LI ; Shi-You TANG ; Li-Li WANG ; Xue-Yi WANG ; Yun-Long TAN ; Qi LIU ; Uki MOTOMICHI ; Ming-Ji XIAN ; Hong-Yan ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(5):654-658
Objective To evaluate the efficacy and safety of brexpiprazole in treating acute schizophrenia.Methods Patients with schizophrenia were randomly divided into treatment group and control group.The treatment group was given brexpiprozole 2-4 mg·d-1 orally and the control group was given aripiprazole 10-20 mg·d-1orally,both were treated for 6 weeks.Clinical efficacy of the two groups,the response rate at endpoint,the changes from baseline to endpoint of Positive and Negative Syndrome Scale(PANSS),Clinical Global Impression-Improvement(CGI-S),Personal and Social Performance scale(PSP),PANSS Positive syndrome subscale,PANSS negative syndrome subscale were compared.The incidence of treatment-related adverse events in two groups were compared.Results There were 184 patients in treatment group and 186 patients in control group.After treatment,the response rates of treatment group and control group were 79.50%(140 cases/184 cases)and 82.40%(150 cases/186 cases),the scores of CGI-I of treatment group and control group were(2.00±1.20)and(1.90±1.01),with no significant difference(all P>0.05).From baseline to Week 6,the mean change of PANSS total score wese(-30.70±16.96)points in treatment group and(-32.20±17.00)points in control group,with no significant difference(P>0.05).The changes of CGI-S scores in treatment group and control group were(-2.00±1.27)and(-1.90±1.22)points,PSP scores were(18.80±14.77)and(19.20±14.55)points,PANSS positive syndrome scores were(-10.30±5.93)and(-10.80±5.81)points,PANSS negative syndrome scores were(-6.80±5.98)and(-7.30±5.15)points,with no significant difference(P>0.05).There was no significant difference in the incidence of treatment-related adverse events between the two group(69.00%vs.64.50%,P>0.05).Conclusion The non-inferiority of Brexpiprazole to aripiprazole was established,with comparable efficacy and acceptability.
9.Pathologic Function of Cyclin-dependent Kinase 5 and Its Relationship With Exercise
Dan JIN ; Rui-Qi HUANG ; Ting-Ting YAO ; Xue-Jie YI ; Hai-Ning GAO
Progress in Biochemistry and Biophysics 2024;51(11):2868-2879
Cyclin-dependent kinases (CDKs) are proline-induced serine/threonine kinases that are primarily involved in the regulation of cell cycle, gene transcription, and cell differentiation. In general, CDKs are activated by binding to specific regulatory subunits of cell cycle proteins and are regulated by phosphorylation of specific T-loops by CDK activated kinases. In the CDKs family, cyclin-dependent kinase 5 (CDK5) is a specialized member whose activity is triggered only by interaction with p35 and p39, which do not have the same sequence as the cell cycle proteins, and this may be one reason why CDK5 is distinguished from other CDK members by its structural and functional differences. In addition, unlike most CDK members that require phosphorylation at specific sites to function, CDK5 does not require such phosphorylation, and it can be activated simply by binding to p35 and p39. More notably, inhibitors that are commonly used to inhibit the activity of other CDK members have almost zero effect on CDK5. In contrast, CDK5, as a unique CDK family member, plays an important role in the development of numerous diseases. In metabolic diseases, elevated CDK5 expression leads to decreased insulin secretion, increased foam cell formation and triggers decreased bone mass in the body, thus accelerating metabolic diseases, and the role of CDK5 in bone biology is gradually gaining attention, and the role of CDK5 in bone metabolic diseases may become a hotspot for research in the future; in neurodegenerative diseases, hyperphosphorylation of Tau protein is an important hallmark of Alzheimer’s disease development, and changes in CDK5 expression are associated with Tau protein phosphorylation and nerve death, indicating that CDK5 is highly related to the development of the nervous system; in tumor diseases, the role of CDK5 in the proliferation, differentiation and migration and invasion of tumor cells marks the development of tumorigenesis, but different researchers hold different views, and further studies are needed in the follow-up. Therefore, the study of its mechanism of action in diseases can help to reveal the pathogenesis and pathological process of diseases. Appropriate exercise not only helps in the prevention of diseases, but also plays a positive role in the treatment of diseases. Exercise-induced mechanical stress can improve bone microstructure and increase bone mass in osteoporosis patients. In addition, exercise can effectively inhibit neuronal apoptosis and improve mitochondrial dysfunction, more importantly, appropriate exercise can inhibit the proliferation of cancer cells to a certain extent. It can be seen that exercise occupies a pivotal position in the prevention and treatment of pathologic diseases. It has been shown that exercise can reduce the expression of CDK5 and affect the pathological process of neurological diseases. Currently, there is a dearth of research on the specific mechanisms of CDK5’s role in improving disease outcomes through exercise. In order to understand its effects more comprehensively, subsequent studies need to employ diverse exercise modalities, targeting patients with various types of diseases or corresponding animal models for in-depth exploration. This article focuses on the pathological functions of CDK5 and its relationship with exercise, with a view to providing new insights into the prevention and treatment of disease by CDK5.
10.The Role and Possible Mechanisms of Exercise in Combating Osteoporosis by Modulating The Bone Autophagy Pathway
Xin-Yu DAI ; Bin LI ; Dan JIN ; Xue-Jie YI ; Rui-Qi HUANG ; Hai-Ning GAO
Progress in Biochemistry and Biophysics 2024;51(7):1589-1603
Osteoporosis leads to an imbalance in bone remodelling, where bone resorption is greater than bone formation and osteoclast degradation increases, resulting in severe bone loss. Autophagy is a lysosomal degradation pathway that regulates the proliferation, differentiation, and apoptosis of various bone cells (including osteoblasts, osteoclasts, and osteoclasts), and is deeply involved in the bone remodelling process. In recent years, the role of autophagy in the progression of osteoporosis and related bone metabolic diseases has received more and more attention, and it has become a research hotspot in this field. Summarising the existing studies, it is found that senile osteoporosis is the result of a combination of factors. On the one hand, it is the imbalance of bone remodelling and the increase of bone resorption/bone formation ratio with ageing, which causes progressive bone loss. On the other hand, aging leads to a general decrease in the level of autophagy, a decrease in the activity of osteoblasts and osteoclasts, and an inhibition of osteogenic differentiation. The lack of oestrogen leads to the immune system being in a low activation state, and the antioxidant capacity is weakened and inflammatory response is increased, inducing autophagy-related proteins to participate in the transmission of inflammatory signals, excessive accumulation of reactive oxygen species (ROS) in the skeleton, and negatively regulating bone formation. In addition, with aging and the occurrence of related diseases, glucocorticoid treatments also mediate autophagy in bone tissue cells, contributing to the decline in bone strength. Exercise, as an effective means of combating osteoporosis, improves bone biomechanical properties and increases bone density. It has been found that exercise induces oxidative stress, energy imbalance, protein defolding and increased intracellular calcium ions in the organism, which in turn activates autophagy. In bone, exercise of different intensities activates messengers such as ROS, PI3K, and AMP. These messengers signal downstream cascades, which in turn induce autophagy to restore dynamic homeostasis in vivo. During exercise, increased production of AMP, PI3K, and ROS activate their downstream effectors, AMPK, Akt, and p38MAPK, respectively, and these molecules in turn lead to activation of the autophagy pathway. Activation of AMPK inhibits mTOR activity and phosphorylates ULK1 at different sites, inducing autophagy. AMPK and p38 up-regulate per-PGC-1α activity and activate transcription factors in the nucleus, resulting in increased autophagy and lysosomal genes. Together, they activate FoxOs, whose transcriptional activity controls cellular processes including autophagy and can act on autophagy key proteins, while FoxOs proteins are expressed in osteoblasts. Exercise also regulates the expression of mTORC1, FoxO1, and PGC-1 through the PI3K/Akt signalling pathway, which ultimately plays a role in the differentiation and proliferation of osteoblasts and regulates bone metabolism. In addition, BMPs signaling pathway and long chain non-coding RNAs also play a role in the proliferation and differentiation of osteoblasts and autophagy process under exercise stimulation. Therefore, exercise may become a new molecular regulatory mechanism to improve osteoporosis through the bone autophagy pathway, but the specific mechanism needs to be further investigated. How exercise affects bone autophagy and thus prevents and treats bone-related diseases will become a future research hotspot in the fields of biology, sports medicine and sports science, and it is believed that future studies will further reveal its mechanism and provide new theoretical basis and ideas.

Result Analysis
Print
Save
E-mail