1.Internal tension relieving technique assisted anterior cruciate ligament reconstruction to promote ligamentization of Achilles tendon grafts in small ear pigs in southern Yunnan province
Bohan XIONG ; Guoliang WANG ; Yang YU ; Wenqiang XUE ; Hong YU ; Jinrui LIU ; Zhaohui RUAN ; Yajuan LI ; Haolong LIU ; Kaiyan DONG ; Dan LONG ; Zhao CHEN
Chinese Journal of Tissue Engineering Research 2025;29(4):713-720
BACKGROUND:We have successfully established an animal model of small ear pig in southern Yunnan province with internal tension relieving technique combined with autologous Achilles tendon for anterior cruciate ligament reconstruction,and verified the stability and reliability of the model.However,whether internal tension relieving technique can promote the ligamentalization process of autologous Achilles tendon graft has not been studied. OBJECTIVE:To investigate the differences in the process of ligamentalization between conventional reconstruction and internal reduction reconstruction of the anterior cruciate ligament by gross view,histology and electron microscopy. METHODS:Thirty adult female small ear pigs in southern Yunnan province were selected.Anterior cruciate ligament reconstruction was performed on the left knee joint with the ipsilateral knee Achilles tendon(n=30 in the normal group),and anterior cruciate ligament reconstruction was performed on the right knee joint with the ipsilateral knee Achilles tendon combined with the internal relaxation and enhancement system(n=30 in the relaxation group).The autogenous right forelimb was used as the control group;the anterior cruciate ligament was exposed but not severed or surgically treated.At 12,24,and 48 weeks after surgery,10 animals were sacrificed,respectively.The left and right knee joint specimens were taken for gross morphological observation to evaluate the graft morphology.MAS score was used to evaluate the excellent and good rate of the ligament at each time point.Hematoxylin-eosin staining was used to evaluate the degree of ligament graft vascularization.Collagen fibers and nuclear morphology were observed,and nuclear morphology was scored.Ultrastructural remodeling was evaluated by scanning electron microscopy and transmission electron microscopy. RESULTS AND CONCLUSION:(1)The ligament healing shape of the relaxation group was better at various time points after surgery,and the excellent and good rate of MAS score was higher(P<0.05).Moreover,the relaxation group could obtain higher ligament vascularization score(P<0.05).(2)The arrangement of collagen bundles and fiber bundles in the two groups gradually tended to be orderly,and the transverse fiber connections between collagen gradually increased and thickened,suggesting that the strength and shape degree of the grafts were gradually improved,but the ligament remodeling in the relaxation group was always faster than that in the normal group at various time points after surgery.(3)The diameter,distribution density,and arrangement degree of collagen fibers in the relaxation group were better than those in the normal group at all time points,especially in the comparison of collagen fiber diameter between and within the relaxation group(P<0.05).
2.Effect of stress-induced hyperglycemia on new-onset atrial fibrillation in patients with acute myocardial infarction
Hongkai DONG ; Xuan XUE ; Bingbing PENG ; Meiling LIU ; Liuyi HAO
Journal of Public Health and Preventive Medicine 2025;36(6):114-118
Objective To explore the effect of stress hyperglycemia (SHG) on new-onset atrial fibrillation (NOAF) in patients with acute myocardial infarction (AMI). Methods A total of 1 321 patients with non-diabetic AMI who were admitted to the hospital from February 2024 to February 2025 were retrospectively selected. The occurrence of SHG was assessed according to the blood glucose level at admission. All patients received standard treatment after admission. The occurrence of NOAF during hospitalization was recorded. According to the presence or absence of NOAF occurrence, the patients were classified into NOAF group (n=118) and no-NOAF group (n=1,203). The clinical data of the two groups were collected and compared. Multivariate logistic regression analysis was applied to analyze the factors influencing the occurrence of NOAF in AMI patients. Results Among the 1 321 patients, 369 cases (27.93%) had SHG according to their blood glucose test at admission. After the completion of hospitalization, 118 of the 1321 patients developed NOAF, with an incidence rate of 8.93%. Multivariate logistic regression analysis revealed that SHG (OR=2.776, 95%CI: 1.384-5.567), smoking history (OR=2.680, 95%CI: 1.457-4.931), Killip grading at admission (OR=2.779, 95%CI: 1.361-5.671), Gensini score (OR=1.119, 95%CI: 1.038-1.205), time from onset to revascularization (OR=1.114, 95%CI: 0.973-1.275), and NT-proBNP (OR=1.123, 95%CI: 1.049-1.203) were independent influencing factors of NOAF in patients with AMI (P<0.05). Conclusion SHG, smoking history, Killip grading at admission, Gensini score, NT-proBNP, and time from onset to revascularization may influence the occurrence of NOAF in AMI patients during hospitalization, which should be given high attention.
3.Expressions and clinical signifances of TRIM28, PDK1 and N-cadherin in pancreatic carcinoma
Kun YAN ; Aiyan QIU ; Dong XUE ; Ping′an WANG ; Yanfeng JIANG ; Jianyu LIU
International Journal of Surgery 2024;51(10):682-687
Objective:To explore the expressions and clinical significances of tripartite motif-containing protein 28 (TRIM28), 3-phosphoinositide-dependent protein kinase-1 (PDK1), and N-cadherin in pancreatic carcinoma.Methods:A total of 72 patients diagnosed with pancreatic carcinoma underwent radical resection in the Department of Hepatobiliary Surgery, Binzhou People′s Hospital from January 2009 to November 2022 were selected, all of which were pathologically diagnosed as pancreatic ductal adenocarcinoma (PDAC). Immunohistochemistry was used to detect the expression of TRIM28, PDK1, and N-cadherin in 72 cases of pancreatic carcinoma and paracancerous tissues, to explore the correlation between the expression of them and the clinicopathological features of pancreatic carcinoma, and to analyze the influence of their expression and clinicopathological characteristics on the prognosis of patients. The count data were expressed as the number of cases and percentage, and the Chi-square test was used for comparison between groups. Spearman method was used for correlation analysis. Kaplan-Meier method was used for survival analysis, and Log-rank test was used to compare the survival rate, and univariate and multivariate Cox regression analysis were used to analyze the risk factors affecting prognosis.Results:The positive rates of TRIM28 (72.22%), PDK1 (65.28%) and N-cadherin (61.11%) in PDAC were significantly higher than those in para-cancerous tissues (26.39%, 33.33%, 34.72%). Moreover, the patients with high expression of the three had the characteristics of low differentiation, late stage, and lymph node metastasis ( P<0.05). TRIM28 was positively correlated with PDK1 and N-cadherin expression in PDAC ( r=0.720, P<0.001; r=0.714, P<0.001), N-cadherin and PDK1 expression in PDAC was also positively correlated ( r=0.854, P<0.001). Kaplan-Meier survival curve showed that the 2-year survival rate of patients with positive TRIM28, PDK1 and N-cadherin (13.46%, 14.89%, 13.64%) was significantly lower than that of patients with negative tumor (50.00%, 40.00%, 39.29%), the differences were statistically significant ( P<0.05). Univariate Cox regression analysis showed that patients with poor differentiation, nerve infiltration and lymph node metastasis, TNM stage Ⅲ+ Ⅳ, TRIM28 positive, PDK1 positive and N-cadherin positive had a significantly increased risk of death within 2 years after surgery ( P<0.05). Multivariate Cox regression analysis showed that poor differentiation, nerve infiltration, TNM stage Ⅲ+ Ⅳ and TRIM28 positive were independent risk factors for poor prognosis of patients with PDAC ( P<0.05). Conclusions:TRIM28, PDK1 and N-cadherin are highly expressed in PDAC, and the expression level is significantly correlated with the malignant degree of PDAC. TRIM28 is an independent risk factor for the prognosis of patients with PDAC.
4.Improvement of sleep by Jiawei Tianwang Buxin Dan and its mechanisms in simulated model of plateau exposure in rats
Jiaying HUANG ; Jingcao LI ; Yongfang GU ; Yumeng LIU ; Renhong QIU ; Yang ZHANG ; Rui XUE ; Shuo LI ; Huajin DONG ; Yanxin WANG ; Youzhi ZHANG
Chinese Journal of Pharmacology and Toxicology 2024;38(6):401-409
OBJECTIVE To investigate the effect of Jiawei Tianwang Buxin Dan(JWBXD)on insomnia in rats exposed to simulated high-altitude conditions.METHODS ① Thirty SD rats were randomly divided into the normal control,model,model+Jiawei Tianwang Buxin Dan(JWBXD,9.6 mg·kg-1),model+Tianwang Buxin Dan(TWBXD,9.6 mg·kg-1),and model+diazepam(DZP,3 mg·kg-1)groups.Rats,except for the normal control group,were subjected to a low-pressure,low-oxygen animal experimental chamber simulating a 5000 m altitude.Respective drugs were ig administrated once daily at 9:00 for seven days,and signal acquisition and sleep analysis were conducted by a wireless physiological sig-nal telemetry system.②Forty rats were randomly divided into five groups as described in ①.Through-out the experiment,the general condition and body mass of the rats were observed daily.Drug adminis-tration lasted for seven days,and grip strength was tested one hour after the final administration.ELISA was used to measure the levels of corticotropin-releasing hormone(CRH),adrenocorticotropic hor-mone(ACTH),corticosterone(CORT),and melatonin(MLT)in serum.Western blotting was performed to measure the expression levels of core clock proteins period circadian regulator 2(Per2),circadian locomotor output cycles(Clock),cryptochrome 2(Cry2),brain-muscle arnt-like protein 1(Bmal1),nuclear receptor subfamily 1,group D member 1(NR1D1),glycogen synthase kinase-3β(GSK-3β),as well as acetylserotonin O-methyltransferase(ASMT)in the hypothalamus and pineal gland,respectively.RESULTS ① Compared with the normal control group,the model group exhibited a decrease in total sleep time(P<0.01),an increase in wakefulness(P<0.01),a significant reduction in slow wave sleep(SWS)(P<0.05)and the mean bouts duration(P<0.05).Compared with the model group,both DZP and JWBXD(P<0.01)prolonged sleep time and suppressed wakefulness(P<0.01)in the hypoxic envi-ronment.DZP and JWBXD prolonged SWS(P<0.05,P<0.01),while TWBXD had no significant effect.JWBXD improved the mean bouts duration of SWS in the model rats(P<0.01),whereas no such improvement was observed in model+DZP and model+TWBXD groups.② Compared with the normal control group,the model group showed a significant decrease in forelimb grip strength(P<0.01),increased levels of serum ACTH(P<0.05),CRH,and CORT(P<0.01),and decreased MLT levels(P<0.05).The expression levels of Per2,Cry2,GSK-3β,and NR1D1 in the hypothalamus were downregu-lated(P<0.05,P<0.01),while Bmal1 and Clock were upregulated(P<0.05,P<0.01).ASMT expression in the pineal gland was decreased(P<0.05).Compared with the model group,JWBXD and TWBXD enhanced forelimb grip strength(P<0.01),reduced serum CORT and ACTH levels(P<0.05),decreased CRH levels(P<0.01),and restored MLT levels(P<0.01).JWBXD upregulated the expression levels of Per2,Cry2,GSK-3β and NR1D1 in the hypothalamus(P<0.05,P<0.01),but downregulated Bmal1 and Clock expression(P<0.05,P<0.01).TWBXD downregulated Bmal1 expression in the hypothalamus(P<0.01)and increased NR1D1 expression(P<0.05).DZP significantly enhanced the expression levels of Per2,Cry2 and NR1D1 in the hypothalamus(P<0.01).JWBXD,TWBXD and DZP improved ASMT expression in the pineal gland(P<0.05).CONCLUSION JWBXD can improve sleep structure and prolong the duration of SWS in rats exposed to simulated high-altitude conditions.The mechanisms may involve the regulation of core clock protein expressions in the hypothalamus,promotion of mela-tonin secretion,and inhibition of HPA axis hyperactivity.
5.High tibial osteotomy on varus knee osteoarthritis with medial meniscus posterior root injury
Chun-Jiu WANG ; Xiang-Dong TIAN ; Ye-Tong TAN ; Zhi-Peng XUE ; Wei ZHANG ; Xiao-Min LI ; Ang LIU
China Journal of Orthopaedics and Traumatology 2024;37(9):886-892
Objective To explore clinical effect of distal tibial tubercle-high tibial osteotomy(DTT-HTO)in treating knee osteoarthritis(KO A)with medial meniscus posterior root tear(MMPRT).Methods A retrospective analysis was performed on 21 patients with varus KOA with MMPRT from May 2020 to December 2021,including 3 males and 18 females,aged from 49 to 75 years old with an average of(63.81±6.56)years old,the courses of disease ranged from 0.5 to 18.0 years with an average of(5.9±4.2)years,and 4 patients with grade Ⅱ,14 patients with grade Ⅲ,and 3 patients with grade Ⅳ according to Kellgren-Lawrence;14 patients with type 1 and 7 patients with type 2 according to MMPRT damage classification.The distance of medi-al meniscusextrusion(MME)and weight-bearing line ratio(WBLR)of lower extremity were compared before and 12 months after operation.Visual analogue scale(V AS),Western Ontarioand and McMaster Universities(WOMAC)osteoarthritis index,and Lysholm knee score were used to evaluate knee pain and functional improvement before operation,1,6 and 12 months after operation,respectively.Results Twenty-one patients were followed up for 12 to 18 months with an average of(13.52±1.72)months.MME distance was improved from(4.99±1.05)mm before operation to(1.87±0.76)mm at 12 months after operation(P<0.05).WBLR was increased from(15.49±7.04)%before operation to(62.71±2.27)%at 12 months after operation(P<0.05).VAS was decreased from(7.00±1.14)before operation to(2.04±0.80),(0.90±0.62)and(0.61±0.50)at 1,6 and 12 months after operation.WOMAC were decreased from preoperative(147.90±9.88)to postoperative(103.43±8.52),(74.00±9.54)and(47.62±9.53)at 1,6 and 12 months,and the difference were statistically significant(P<0.05).Lysholm scores were increased from(46.04±7.34)before oepration to(63.19±8.93),(81.10±6.41)and(89.29±3.04)at 1,6 and 12 months after operation(P<0.05).Conclusion For the treatment of varus KOA with MMPRT,DTT-HTO could reduce medial meniscus pro-trusion distance,improve the ratio of lower limb force line,and effectively reduce knee pain and improve knee joint function.
6.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
7.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
8.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
9.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
10.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.


Result Analysis
Print
Save
E-mail