1.Stewed Polygoni Multiflori Radix Treats Androgenic Alopecia in Mice by Activating Wnt/β-catenin Signaling Pathway
Fuzhu PAN ; Mingxia CHEN ; Bin YI ; Yanhua XUE ; Qiuping YU ; Fayun WU ; Enhui JI ; Hongwei WU ; Jing XU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(23):246-253
ObjectiveTo evaluate the therapeutic effect of stewed Polygoni Multiflori Radix on androgenic alopecia (AGA) and study the treatment mechanism. MethodNinety-nine SPF-grade male C57BL/6J mice were randomized into control, model, positive drug (finasteride, 0.65 mg·kg-1), low (0.78 g·kg-1), medium (1.56 g·kg-1), and high (3.12 g·kg-1)-dose stewed Polygoni Multiflori Radix, and Polygoni Multiflori Radix Praeparata groups by the random number table method. The mouse model of AGA was constructed by subcutaneous multi-point injection of testosterone propionate diluent for 60 days, and the mice were administrated with corresponding drugs by gavage from day 11. The therapeutic effects of stewed Polygoni Multiflori Radix and Polygoni Multiflori Radix Praeparata on AGA were evaluated by newly hair area, hair length, hair weight in the hair removal area, and hematoxylin-eosin staining. Enzyme-linked immunosorbent assay was employed to determine the levels of testosterone (T), dihydrotestosterone (DHT), and 5α-reductase (5-AR) in the skin tissue of mice. Western blot was employed to determine the expression levels of key proteins in the Wnt/β-catenin signaling pathway. ResultCompared with the control group, the model group (after 60 days of modeling) showed reductions in the newly hair area, hair length and weight in the back hair removal area, and ratio of hair follicles containing melanin to total hair follicles (P<0.05, P<0.01), elevated levels of T, DHT, and 5-AR, up-regulated expression level of glycogen synthase kinase-3β (GSK-3β) (P<0.05, P<0.01), and down-regulated expression levels of β-catenin, phospho-glycogen synthase kinase-3β (p-GSK-3β), and p-GSK-3β/GSK-3β (P<0.05, P<0.01) in the skin tissue. Compared with the model group, the positive drug, low-, medium-, and high-dose stewed Polygoni Multiflori Radix, and low-, medium-, and high-dose Polygoni Multiflori Radix Praeparata improved the newly hair area and hair length of mice (P<0.01), and stewed Polygoni Multiflori Radix and Polygoni Multiflori Radix Praeparata at low and medium doses improved the weight of newly formed hair in mice (P<0.05, P<0.01). The positive drug, low-, medium-, and high-dose stewed Polygoni Multiflori Radix, and low- and high-dose Polygoni Multiflori Radix Praeparata increased the ratio of hair follicles containing melanin to total hair follicles in the skin tissue (P<0.05, P<0.01). Compared with Polygoni Multiflori Radix Praeparata at the same doses, the medium and high doses of stewed Polygoni Multiflori Radix increased the ratio of melanin-containing hair follicles to total hair follicles (P<0.05). Compared with the model group, stewed Polygoni Multiflori Radix lowered the levels of T and DHT, down-regulated the expression level of GSK-3β (P<0.01), and up-regulated the expression levels of β-catenin, p-GSK-3β, and p-GSK-3β/GSK-3β (P<0.05, P<0.01) in the skin tissue of the mice. ConclusionStewed Polygoni Multiflori Radix can ameliorate androgenic alopecia in mice by reducing the androgen level and promoting Wnt/β-catenin signaling.
2.Prognosis and influencing factors analysis of patients with initially resectable gastric cancer liver metastasis who were treated by different modalities: a nationwide, multicenter clinical study
Li LI ; Yunhe GAO ; Liang SHANG ; Zhaoqing TANG ; Kan XUE ; Jiang YU ; Yanrui LIANG ; Zirui HE ; Bin KE ; Hualong ZHENG ; Hua HUANG ; Jianping XIONG ; Zhongyuan HE ; Jiyang LI ; Tingting LU ; Qiying SONG ; Shihe LIU ; Hongqing XI ; Yun TANG ; Zhi QIAO ; Han LIANG ; Jiafu JI ; Lin CHEN
Chinese Journal of Digestive Surgery 2024;23(1):114-124
Objective:To investigate the prognosis of patients with initially resectable gastric cancer liver metastasis (GCLM) who were treated by different modalities, and analyze the influencing factors for prognosis of patients.Methods:The retrospective cohort study was conducted. The clinicopathological data of 327 patients with initially resectable GCLM who were included in the database of a nationwide multicenter retrospective cohort study on GCLM based on real-world data from January 2010 to December 2019 were collected. There were 267 males and 60 females, aged 61(54,68)years. According to the specific situations of patients, treatment modalities included radical surgery combined with systemic treatment, palliative surgery combined with systemic treatment, and systemic treatment alone. Observation indicators: (1) clinical characteristics of patients who were treated by different modalities; (2) prognostic outcomes of patients who were treated by different modalities; (3) analysis of influencing factors for prognosis of patients with initially resectable GCLM; (4) screening of potential beneficiaries in patients who were treated by radical surgery plus systemic treatment and patients who were treated by palliative surgery plus systemic treatment. Measurement data with normal distribution were represented as Mean± SD, and comparison between groups was conducted using the independent sample t test. Measurement data with skewed distribution were represented as M( Q1, Q3), and comparison between groups was conducted using the rank sum test. Count data were described as absolute numbers or percentages, and comparison between groups was conducted using the chi-square test. The Kaplan-Meier method was used to calculate survival rate and draw survival curve, and Log-Rank test was used for survival analysis. Univariate and multivariate analyses were conducted using the COX proportional hazard regression model. The propensity score matching was employed by the 1:1 nearest neighbor matching method with a caliper value of 0.1. The forest plots were utilized to evaluate potential benefits of diverse surgical combined with systemic treatments within the population. Results:(1) Clinical characteristics of patients who were treated by different modalities. Of 327 patients, there were 118 cases undergoing radical surgery plus systemic treatment, 164 cases undergoing palliative surgery plus systemic treatment, and 45 cases undergoing systemic treatment alone. There were significant differences in smoking, drinking, site of primary gastric tumor, diameter of primary gastric tumor, site of liver metastasis, and metastatic interval among the three groups of patients ( P<0.05). (2) Prognostic outcomes of patients who were treated by different modalities. The median overall survival time of the 327 pati-ents was 19.9 months (95% confidence interval as 14.9-24.9 months), with 1-, 3-year overall survival rate of 61.3%, 32.7%, respectively. The 1-year overall survival rates of patients undergoing radical surgery plus systemic treatment, palliative surgery plus systemic treatment and systemic treatment alone were 68.3%, 63.1%, 30.6%, and the 3-year overall survival rates were 41.1%, 29.9%, 11.9%, showing a significant difference in overall survival rate among the three groups of patients ( χ2=19.46, P<0.05). Results of further analysis showed that there was a significant difference in overall survival rate between patients undergoing radical surgery plus systemic treatment and patients undergoing systemic treatment alone ( hazard ratio=0.40, 95% confidence interval as 0.26-0.61, P<0.05), between patients undergoing palliative surgery plus systemic treatment and patients under-going systemic treatment alone ( hazard ratio=0.47, 95% confidence interval as 0.32-0.71, P<0.05). (3) Analysis of influencing factors for prognosis of patients with initially resectable GCLM. Results of multivariate analysis showed that the larger primary gastric tumor, poorly differentiated tumor, larger liver metastasis, multiple hepatic metastases were independent risk factors for prognosis of patients with initially resectable GCLM ( hazard ratio=1.20, 1.70, 1.20, 2.06, 95% confidence interval as 1.14-1.27, 1.25-2.31, 1.04-1.42, 1.45-2.92, P<0.05) and immunotherapy or targeted therapy, the treatment modality of radical or palliative surgery plus systemic therapy were independent protective factors for prognosis of patients with initially resectable GCLM ( hazard ratio=0.60, 0.39, 0.46, 95% confidence interval as 0.42-0.87, 0.25-0.60, 0.30-0.70, P<0.05). (4) Screening of potentinal beneficiaries in patients who were treated by radical surgery plus systemic treatment and patients who were treated by palliative surgery plus systemic treatment. Results of forest plots analysis showed that for patients with high-moderate differentiated GCLM and patients with liver metastasis located in the left liver, the overall survival rate of patients undergoing radical surgery plus systemic treatment was better than patients undergoing palliative surgery plus systemic treatment ( hazard ratio=0.21, 0.42, 95% confidence interval as 0.09-0.48, 0.23-0.78, P<0.05). Conclusions:Compared to systemic therapy alone, both radical and palliative surgery plus systemic therapy can improve the pro-gnosis of patients with initially resectable GCLM. The larger primary gastric tumor, poorly differen-tiated tumor, larger liver metastasis, multiple hepatic metastases are independent risk factors for prognosis of patients with initial resectable GCLM and immunotherapy or targeted therapy, the treatment modality of radical or palliative surgery plus systemic therapy are independent protective factors for prognosis of patients with initially resectable GCLM.
3.Research progress on the effect of α7 nicotinic acetylcholine receptor on perioperative neurocognitive function
Shang-Kun SI ; Ying-Xue XU ; Wei-Liang ZHANG ; Jia-Fu JI ; Dong-Bin ZHANG
Medical Journal of Chinese People's Liberation Army 2024;49(3):343-348
α7 nicotinic acetylcholine receptor(α7nAChR)is widely expressed in the central nervous system and immune system,and plays a neuro-immunoregulatory role.On the one hand,α7nAChR is involved in the transmission of neurotransmitters,the conduction of excitatory signals and the maintenance of synaptic plasticity,which is of great significance for maintaining the normal and stable neurocognitive function.On the other hand,as an important part of the cholinergic anti-inflammatory pathway,α7nAChR is involved in the regulation of physiological and pathological processes such as inflammatory response,oxidative stress,apoptosis and autophagy in the central system,and plays an immunomodulatory and neuroprotective role,thus being potential target for improving perioperative neurocognitive function.This article reviews the biological characteristics of α7nAChR and its effect on perioperative neurocognitive function,in order to provide ideas and methods for clinical improvement of perioperative neurocognitive function in surgical patients.
4.Clinical trial of brexpiprazole in the treatment of adults with acute schizophrenia
Shu-Zhe ZHOU ; Liang LI ; Dong YANG ; Jin-Guo ZHAI ; Tao JIANG ; Yu-Zhong SHI ; Bin WU ; Xiang-Ping WU ; Ke-Qing LI ; Tie-Bang LIU ; Jie LI ; Shi-You TANG ; Li-Li WANG ; Xue-Yi WANG ; Yun-Long TAN ; Qi LIU ; Uki MOTOMICHI ; Ming-Ji XIAN ; Hong-Yan ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(5):654-658
Objective To evaluate the efficacy and safety of brexpiprazole in treating acute schizophrenia.Methods Patients with schizophrenia were randomly divided into treatment group and control group.The treatment group was given brexpiprozole 2-4 mg·d-1 orally and the control group was given aripiprazole 10-20 mg·d-1orally,both were treated for 6 weeks.Clinical efficacy of the two groups,the response rate at endpoint,the changes from baseline to endpoint of Positive and Negative Syndrome Scale(PANSS),Clinical Global Impression-Improvement(CGI-S),Personal and Social Performance scale(PSP),PANSS Positive syndrome subscale,PANSS negative syndrome subscale were compared.The incidence of treatment-related adverse events in two groups were compared.Results There were 184 patients in treatment group and 186 patients in control group.After treatment,the response rates of treatment group and control group were 79.50%(140 cases/184 cases)and 82.40%(150 cases/186 cases),the scores of CGI-I of treatment group and control group were(2.00±1.20)and(1.90±1.01),with no significant difference(all P>0.05).From baseline to Week 6,the mean change of PANSS total score wese(-30.70±16.96)points in treatment group and(-32.20±17.00)points in control group,with no significant difference(P>0.05).The changes of CGI-S scores in treatment group and control group were(-2.00±1.27)and(-1.90±1.22)points,PSP scores were(18.80±14.77)and(19.20±14.55)points,PANSS positive syndrome scores were(-10.30±5.93)and(-10.80±5.81)points,PANSS negative syndrome scores were(-6.80±5.98)and(-7.30±5.15)points,with no significant difference(P>0.05).There was no significant difference in the incidence of treatment-related adverse events between the two group(69.00%vs.64.50%,P>0.05).Conclusion The non-inferiority of Brexpiprazole to aripiprazole was established,with comparable efficacy and acceptability.
5.Renal diabetes insipidus caused by Sj?gren′s syndrome
Xiaoxia LIU ; Lijin JI ; Lingbiao WANG ; Lin LU ; Yu XUE ; Jun XUE ; Yiming LI ; Bin LU
Chinese Journal of Endocrinology and Metabolism 2024;40(8):697-701
We present a case of nephrogenic diabetes insipidus secondary to primary Sj?gren′s syndrome. At onset, the patient exhibited a urine output of up to 10 liter per day. Diagnostic evaluation and clinical features confirmed renal diabetes insipidus due to primary Sj?gren′s syndrome. A review of the literature indicates that primary Sj?gren′s syndrome can involve renal manifestations, including renal tubulointerstitial inflammation and impaired renal concentration ability. However, nephrogenic diabetes insipidus with such high urine output is uncommon. Management of this condition requires proactive control of the underlying disease, potassium supplementation, and urine management.
6.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
7.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
8.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
9.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
10.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.

Result Analysis
Print
Save
E-mail