1.Optimization of simmering technology of Rheum palmatum from Menghe Medical School and the changes of chemical components after processing
Jianglin XUE ; Yuxin LIU ; Pei ZHONG ; Chanming LIU ; Tulin LU ; Lin LI ; Xiaojing YAN ; Yueqin ZHU ; Feng HUA ; Wei HUANG
China Pharmacy 2025;36(1):44-50
OBJECTIVE To optimize the simmering technology of Rheum palmatum from Menghe Medical School and compare the difference of chemical components before and after processing. METHODS Using appearance score, the contents of gallic acid, 5-hydroxymethylfurfural (5-HMF), sennoside A+sennoside B, combined anthraquinone and free anthraquinone as indexes, analytic hierarchy process (AHP)-entropy weight method was used to calculate the comprehensive score of evaluation indicators; the orthogonal experiment was designed to optimize the processing technology of simmering R. palmatum with fire temperature, simmering time, paper layer number and paper wrapping time as factors; validation test was conducted. The changes in the contents of five anthraquinones (aloe-emodin, rhein, emodin, chrysophanol, physcion), five anthraquinone glycosides (barbaloin, rheinoside, rhubarb glycoside, emodin glycoside, and emodin methyl ether glycoside), two sennosides (sennoside A, sennoside B), gallic acid and 5-HMF were compared between simmered R. palmatum prepared by optimized technology and R. palmatum. RESULTS The optimal processing conditions of R. palmatum was as follows: each 80 g R. palmatum was wrapped with a layer of wet paper for 0.5 h, simmered on high heat for 20 min and then simmered at 140 ℃, the total simmering time was 2.5 h. The average comprehensive score of 3 validation tests was 94.10 (RSD<1.0%). After simmering, the contents of five anthraquinones and two sennosides were decreased significantly, while those of 5 free anthraquinones and gallic acid were increased to different extents; a new component 5-HMF was formed. CONCLUSIONS This study successfully optimizes the simmering technology of R. palmatum. There is a significant difference in the chemical components before and after processing, which can explain that simmering technology slows down the relase of R. palmatum and beneficiate it.
2.Clinical study of constructing nomogram model based on multi-dimensional clinical indicators to predict prognosis of knee osteoarthritis
Xin WANG ; Cong-Jun YE ; Zhen-Zhong DENG ; Yan XUE ; Chen-Hui WEI ; Qing-Biao LI ; Yang-Ming LUO ; Jian-Zhong GAN
China Journal of Orthopaedics and Traumatology 2024;37(2):184-190
Objective To analyze the factors affecting the prognosis of patients with knee osteoarthritis,and to construct a nomogram prediction model in conjunction with multi-dimensional clinical indicators.Methods The clinical data of 234 pa-tients with knee osteoarthritis who were treated in our hospital from January 2015 to June 2021 were retrospectively analyzed,including 126 males and 108 females;age more than 60 years old for 135 cases,age less than 60 years old for 99 cases.Lysholm knee function score was used to evaluate the prognosis of the patients,and the patients were divided into good progno-sis group for 155 patients and poor prognosis group for 79 patients according to the prognosis.The clinical data of the subjects in the experimental cohort were analyzed by single factor and multiple factors.The patients were divided into experimental co-hort and verification cohort,the results of the multiple factor analysis were visualized to obtain a nomogram prediction model,the receiver operating characteristic curve(ROC),calibration curve and decision curve were used to evaluate the model's dis-crimination,accuracy and clinical benefit rate.Results The results of multivariate analysis showed that smoking,pre-treatment K-L grades of Ⅲto Ⅳ,and high levels of interleukin 6(IL-6)and matrix metallo proteinase-3(MMP-3)were risk factors for the prognosis of patients with knee osteoarthritis.ROC test results showed that the area under the curve of the nomogram model in the experimental cohort and validation cohort was 0.806[95%CI(0.742,0.866)]and 0.786[(95%CI(0.678,0.893)],re-spectively.The results of the calibration curve showed that the Brier values of the experimental cohort and verification cohort were 0.151 points and 0.134 points,respectively.When the threshold probability value in the decision curve was set to 31%,the clinical benefit rates of the experimental cohort and validation cohort were 51%and 56%,respectively.Conclusion The prognostic model of patients with knee osteoarthritis constructed based on multi-dimensional clinical data has both theoretical and practical significance,and can provide a reference for taking targeted measures to improve the prognosis of patients.
3.Research progress in the regulation of host antiviral signaling pathways by hepatitis E virus infection
Guo ZHONG ; Dong-Xue CHEN ; Da-Qiao WEI ; Fen HUANG
Chinese Journal of Zoonoses 2024;40(8):782-789
Innate immunity is the first line of defense against viral infection.Hepatitis E virus(HEV)infection usually cau-ses acute self-limiting diseases in immunocompetent patients,but results in chronic infection in immunocompromised patients or pregnant people.After HEV infects host cells,pattern recognition receptors(PRRs)recognize the viral genome,thus indu-cing rapid activation of multiple antiviral signal pathways in the host immune system,and the expression of interferons(IFNs)and interferon stimulated genes(ISGs),and consequently inhibiting viral replication.To escape host antiviral responses,HEV encoded proteins regulate host antiviral signal pathways and subsequently inhibit antiviral responses,such as those involving cytokines or chemokines.The regulation of host signal pathways by HEV infection and the escape of HEV from host innate im-munity are reviewed herein.
4.Protective Effects of Astrocyte-derived Exosomes on Mitochondrial Functional Damage after Oxygen-glucose Deprivation/Reoxygenation
Xiao GAO ; Zheng-Wei WANG ; Na CAI ; Zhi TANG ; Chang-Xue WU ; Xiao-Lan QI ; Zhi-Zhong GUAN ; Yan XIAO
Chinese Journal of Biochemistry and Molecular Biology 2024;40(6):827-837
Exosomes can ameliorate neuronal cell injury induced by hypoxia-ischemia,but the relation-ship between astrocyte-derived exosomes(As-exo)and mitochondrial function,mitochondrial associated ER membrane(MAM)function and whether mitochondrial autophagy is relevant is currently unclear.The aim of this study was to investigate the role of astrocyte-derived exosomes in the regulation of mito-chondrial function,MAM and mitochondrial autophagy in PC 12 cells after oxygen and glucose depriva-tion/reoxygenation(OGD/R).Exosomes were extracted from the supernatant of the astrocyte culture me-dium by ultracentrifugation.Using the live cell imaging system,we observed that fluorescently labeled exosomes could show obvious enrichment in PC 12 cells at 24 h.Meanwhile,co-localization of exosomes with mitochondria could be observed under the laser confocal scanning microscope;mitochondrial pres-sure changes were detected using the Seahorse cellular energy metabolism fractionation instrument.The result showed that basal respiration in the OGD/R group,compared with that in the control group,proton leakage,maximal respiration and ATP-related respiration were significantly reduced(P<0.05 or P<0.01),and all four indexes were elevated and statistically significant in the OGD/R+exo group compared with the control group(P<0.05 or P<0.01).The results of the co-localization of the mitochondria and ER showed that the structure of the MAM was harmed by oxygen-sugar deprivation and then reoxygen-ation,and the structure of As-exo and the mitochondria appeared to have a distance-reduced polymeriza-tion phenomenon,while the mitochondria and ER co-localized.The co-localization results of mitochondri-a and ER showed that the structure of MAM was damaged by oxygen deprivation and reoxygenation,and the aggregation phenomenon of MAM was weakened by the treatment of As-exo;the flow-through results showed that As-exo could restore the decrease of the mitochondrial membrane potential and the elevation of the ROS by oxygen deprivation to a certain degree.Western blotting showed that As-exo could signifi-cantly inhibit the mitochondrial autophagy-associated tension protein homologue induced hypothetical ki-nase 1(PTEN induced kinase 1(PINK1)and Parkin protein(parkin RBR E3 ubiquitin protein ligase(Parkin))were elevated,and the addition of As-exo decreased LC3 Ⅱ/LC3 Ⅰ protein expression,ele-vated P62 protein expression,and reduced OGD/R-induced mitochondrial autophagy.The results showed that OGD/R treatment can cause mitochondrial dysfunction,MAM structural changes and increased mito-chondrial autophagy in PC12 cells,and As-exo treatment can improve mitochondrial function,attenuate the formation of MAM,and reduce mitochondrial autophagy in PC 12 cells,which can have the potential of preventing the reperfusion injury in ischemic stroke.
6.Exploring lncRNA Expression Patterns in Patients With Hypertrophied Ligamentum Flavum
Junling CHEN ; Guibin ZHONG ; Manle QIU ; Wei KE ; Jingsong XUE ; Jianwei CHEN
Neurospine 2024;21(1):330-341
Objective:
Hypertrophy ligamentum flavum (LFH) is a common cause of lumbar spinal stenosis, resulting in significant disability and morbidity. Although long noncoding RNAs (lncRNAs) have been associated with various biological processes and disorders, their involvement in LFH remains not fully understood.
Methods:
Human ligamentum flavum samples were analyzed using lncRNA sequencing followed by validation through quantitative real-time polymerase chain reaction. To explore the potential biological functions of differentially expressed lncRNA-associated genes, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. We also studied the impact of lncRNA PARD3-AS1 on the progression of LFH in vitro.
Results:
In the LFH tissues when compared to that in the nonhypertrophic ligamentum flavum (LFN) tissues, a total of 1,091 lncRNAs exhibited differential expression, with 645 upregulated and 446 downregulated. Based on GO analysis, the differentially expressed transcripts primarily participated in metabolic processes, organelles, nuclear lumen, cytoplasm, protein binding, nucleic acid binding, and transcription factor activity. Moreover, KEGG pathway analysis indicated that the differentially expressed lncRNAs were associated with the hippo signaling pathway, nucleotide excision repair, and nuclear factor-kappa B signaling pathway. The expression of PARD3-AS1, RP11-430G17.3, RP1-193H18.3, and H19 was confirmed to be consistent with the sequencing analysis. Inhibition of PARD3-AS1 resulted in the suppression of fibrosis in LFH cells, whereas the overexpression of PARD3-AS1 promoted fibrosis in LFH cells in vitro.
Conclusion
This study identified distinct expression patterns of lncRNAs that are linked to LFH, providing insights into its underlying mechanisms and potential prognostic and therapeutic interventions. Notably, PARD3-AS1 appears to play a significant role in the pathophysiology of LFH.
7.A case report of reno-portal anastomosis liver transplantation for grade 4 portal vein thrombosis
Zhongzhong LIU ; Zibiao ZHONG ; Chenbiao XUE ; Wei ZHOU ; Shaojun YE ; Qifa YE
Chinese Journal of Organ Transplantation 2024;45(4):265-268
The relevant clinical data were reviewed for a recipient of grade 4 portal vein thrombus undergoing reno-portal anastomosis liver transplantation on May 19, 2022. Liver function transaminase and bilirubin gradually normalized within 2 weeks after operation. An elevation of creatinine showed mild functional impairment at Day 5-7 post-operation and then recovered quickly. No portal vein thrombosis, gastrointestinal hemorrhage, ascites and other complications occurred within 2 years post-operation. The survival was excellent during 2-year follow-ups.
8.Design and implementation of high precision ear pulse wave physiological signal detection device for human centrifuge training
Ke JIANG ; Ming-Hao YANG ; Hai-Xia WANG ; Bao-Hui LI ; Jing-Hui YANG ; Xiao-Xue ZHANG ; Zhong-Zheng GUO ; Xiao-Yang WEI
Chinese Medical Equipment Journal 2024;45(9):35-40
Objective To design and implement a high-precision ear pulse wave physiological signal detection device for human centrifuge training to solve the problems in measurement and calibration of pilot ear pulse wave signal during human centrifuge training.Methods The high-precision ear pulse wave physiological signal detection device was composed of an ear pulse wave acquisition sensor,a signal acquisition and control unit and a host signal processing module.The ear pulse wave acquisition sensor had an ear-clip-like shape and consisted of an outer shell,an inner shell and an elastic steel plate;the signal acquisition and control unit was made up of an power supply module,a constant voltage module for the light source,a signal acquisition module,a master control module and a data transmission module,which had its software developed with an embedded system;the host signal processing module divided the signal processing into 2 phases of signal pre-processing and pulse wave signal monitoring and display.The detection performance of the device was verified by using a physiological electrical signal calibrator to test the ear pulse wave signals detected with the device;the effectiveness and stability of the device were validated by implementing human centrifuge training experiments with different loads.Results The voltage measurement error,amplitude-frequency characteristics and common mode rejection ratio detected by this device were all within the permitted ranges of JJG 760-2003 Verification Regulation for Electro Cardiac Monitor and JJG 954-2019 Verification Regulation of Digital Electroencephalographs;the device was capable of detecting the ear pulse wave signals of pilot during human centrifuge training in real time with little interference from motion and stable signal quality.Conclusion The device can accurately clarify the changes in the amplitude of the pilot's ear pulse wave during human centrifuge training and effectively reflect the changes in the pilot's cerebral blood flow under positive acceleration.[Chinese Medical Equipment Journal,2024,45(9):35-40]
10.Exploring lncRNA Expression Patterns in Patients With Hypertrophied Ligamentum Flavum
Junling CHEN ; Guibin ZHONG ; Manle QIU ; Wei KE ; Jingsong XUE ; Jianwei CHEN
Neurospine 2024;21(1):330-341
Objective:
Hypertrophy ligamentum flavum (LFH) is a common cause of lumbar spinal stenosis, resulting in significant disability and morbidity. Although long noncoding RNAs (lncRNAs) have been associated with various biological processes and disorders, their involvement in LFH remains not fully understood.
Methods:
Human ligamentum flavum samples were analyzed using lncRNA sequencing followed by validation through quantitative real-time polymerase chain reaction. To explore the potential biological functions of differentially expressed lncRNA-associated genes, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. We also studied the impact of lncRNA PARD3-AS1 on the progression of LFH in vitro.
Results:
In the LFH tissues when compared to that in the nonhypertrophic ligamentum flavum (LFN) tissues, a total of 1,091 lncRNAs exhibited differential expression, with 645 upregulated and 446 downregulated. Based on GO analysis, the differentially expressed transcripts primarily participated in metabolic processes, organelles, nuclear lumen, cytoplasm, protein binding, nucleic acid binding, and transcription factor activity. Moreover, KEGG pathway analysis indicated that the differentially expressed lncRNAs were associated with the hippo signaling pathway, nucleotide excision repair, and nuclear factor-kappa B signaling pathway. The expression of PARD3-AS1, RP11-430G17.3, RP1-193H18.3, and H19 was confirmed to be consistent with the sequencing analysis. Inhibition of PARD3-AS1 resulted in the suppression of fibrosis in LFH cells, whereas the overexpression of PARD3-AS1 promoted fibrosis in LFH cells in vitro.
Conclusion
This study identified distinct expression patterns of lncRNAs that are linked to LFH, providing insights into its underlying mechanisms and potential prognostic and therapeutic interventions. Notably, PARD3-AS1 appears to play a significant role in the pathophysiology of LFH.

Result Analysis
Print
Save
E-mail