1.Molecular biological research and molecular homologous modeling of Bw.03 subgroup
Li WANG ; Yongkui KONG ; Huifang JIN ; Xin LIU ; Ying XIE ; Xue LIU ; Yanli CHANG ; Yafang WANG ; Shumiao YANG ; Di ZHU ; Qiankun YANG
Chinese Journal of Blood Transfusion 2025;38(1):112-115
[Objective] To study the molecular biological mechanism for a case of ABO blood group B subtype, and perform three-dimensional modeling of the mutant enzyme. [Methods] The ABO phenotype was identified by the tube method and microcolumn gel method; the ABO gene of the proband was detected by sequence-specific primer polymerase chain reaction (PCR-SSP), and the exon 6 and 7 of the ABO gene were sequenced and analyzed. Homologous modeling of Bw.03 glycosyltransferase (GT) was carried out by Modeller and analyzed by PyMOL2.5.0 software. [Results] The weakening B antigen was detected in the proband sample by forward typing, and anti-B antibody was detected by reverse typing. PCR-SSP detection showed B, O gene, and the sequencing results showed c.721 C>T mutation in exon 7 of the B gene, resulting in p. Arg 241 Trp. Compared with the wild type, the structure of Bw.03GT was partially changed, and the intermolecular force analysis showed that the original three hydrogen bonds at 241 position disappeared. [Conclusion] Blood group molecular biology examination is helpful for the accurate identification of ambiguous blood group. Homologous modeling more intuitively shows the key site for the weakening of Bw.03 GT activity. The intermolecular force analysis can explain the root cause of enzyme activity weakening.
2.Regulation of Tumor Immune Homeostasis by Programmed Cell Death and Intervention Effect of Traditional Chinese Medicine Under Theory of Regulating Qi and Resolving Toxins
Bingwei YANG ; Xue CHEN ; Chenglei WANG ; Haoyu ZHAI ; Weidong LI ; Baojin HUA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):212-220
Tumor immune homeostasis is a dynamic equilibrium state in which the body removes abnormal mutated cells in time to prevent tumor development without damaging other normal cells under the surveillance of the immune system. It is an important concept to understand the process of tumor development. Programmed cell death (PCD) is a kind of regulable cell death including various forms such as apoptosis, autophagy, pyroptosis, necrosis, and ferroptosis. It is regarded as an important way for the body to remove abnormal or mutated cells. In recent years, modern research has found that PCD has a bi-directional regulatory effect on carcinogenesis and tumor development. In the early stage of tumor formation, PCD can control tumor development in time by playing a specific immune clearance role, while in the later tumorigenic stage, PCD can promote the growth and development of tumor cells by forming a tumor-specific microenvironment, resulting in carcinogenic effects. Therefore, PCD is regarded as an important way to maintain tumor immune homeostasis. Based on the idea of ''supporting the vital Qi and cultivating the root'' by professors Yu Guiqing and Piao Bingkui, the team proposed the theory of ''regulating Qi and resolving toxins'' and applied it to clinical tumor prevention and treatment. Based on the theory of ''regulating Qi and resolving toxins'', the research summarized the current progress of modern medical research on mechanisms related to PCD to explore the role of PCD in the regulation of tumor immune homeostasis. The article believed that the harmonious state of Qi movement was the basic condition for normal PCD to maintain tumor immune homeostasis, while the disorder of Qi movement and the evolution of tumor toxicity were the core processes of abnormal PCD and disorder of tumor immunity homeostasis, which led to the escape and development of tumor cells. Therefore, under the guidance of ''regulating Qi and removing toxins'', the idea of full-cycle prevention and treatment of tumors was proposed summarily. In the early stage of tumor formation, the method of ''regulating Qi movement and strengthening vital Qi'' was applied to reestablish tumor immune homeostasis and to promote the elimination of abnormal cells. In the late tumorigenic stage, the method of ''resolving toxins and dispelling evils'' was applied to reverse the specific microenvironment of tumors and inhibit the development of tumor cells, with a view to providing new theoretical support for the prevention and treatment of tumors through traditional Chinese medicine.
3.Regulation of Tumor Immune Homeostasis by Programmed Cell Death and Intervention Effect of Traditional Chinese Medicine Under Theory of Regulating Qi and Resolving Toxins
Bingwei YANG ; Xue CHEN ; Chenglei WANG ; Haoyu ZHAI ; Weidong LI ; Baojin HUA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):212-220
Tumor immune homeostasis is a dynamic equilibrium state in which the body removes abnormal mutated cells in time to prevent tumor development without damaging other normal cells under the surveillance of the immune system. It is an important concept to understand the process of tumor development. Programmed cell death (PCD) is a kind of regulable cell death including various forms such as apoptosis, autophagy, pyroptosis, necrosis, and ferroptosis. It is regarded as an important way for the body to remove abnormal or mutated cells. In recent years, modern research has found that PCD has a bi-directional regulatory effect on carcinogenesis and tumor development. In the early stage of tumor formation, PCD can control tumor development in time by playing a specific immune clearance role, while in the later tumorigenic stage, PCD can promote the growth and development of tumor cells by forming a tumor-specific microenvironment, resulting in carcinogenic effects. Therefore, PCD is regarded as an important way to maintain tumor immune homeostasis. Based on the idea of ''supporting the vital Qi and cultivating the root'' by professors Yu Guiqing and Piao Bingkui, the team proposed the theory of ''regulating Qi and resolving toxins'' and applied it to clinical tumor prevention and treatment. Based on the theory of ''regulating Qi and resolving toxins'', the research summarized the current progress of modern medical research on mechanisms related to PCD to explore the role of PCD in the regulation of tumor immune homeostasis. The article believed that the harmonious state of Qi movement was the basic condition for normal PCD to maintain tumor immune homeostasis, while the disorder of Qi movement and the evolution of tumor toxicity were the core processes of abnormal PCD and disorder of tumor immunity homeostasis, which led to the escape and development of tumor cells. Therefore, under the guidance of ''regulating Qi and removing toxins'', the idea of full-cycle prevention and treatment of tumors was proposed summarily. In the early stage of tumor formation, the method of ''regulating Qi movement and strengthening vital Qi'' was applied to reestablish tumor immune homeostasis and to promote the elimination of abnormal cells. In the late tumorigenic stage, the method of ''resolving toxins and dispelling evils'' was applied to reverse the specific microenvironment of tumors and inhibit the development of tumor cells, with a view to providing new theoretical support for the prevention and treatment of tumors through traditional Chinese medicine.
4.Mechanism of Shaoyaotang in Modulating MDSCs-related Immunosuppressive Microenvironment in Prevention and Treatment of Colitis-associated Carcinogenesis
Xue CHEN ; Chenglei WANG ; Bingwei YANG ; Haoyu ZHAI ; Ying WU ; Weidong LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):10-19
ObjectiveTo explore the mechanism of Shaoyaotang in the prevention and treatment of colitis-associated carcinogenesis (CAC) based on myeloid-derived suppressor cells (MDSCs)-related immunosuppressive microenvironment. MethodsA total of 140 six-week-old SPF FVB male mice were randomly divided into seven groups: Blank group, Shaoyaotang without model group (7.12 g·kg-1), model group, sulfasalazine group (0.52 g·kg-1), Shaoyaotang low-dose group (3.56 g·kg-1), Shaoyaotang medium-dose group (7.12 g·kg-1) and Shaoyaotang high-dose group (14.24 g·kg-1), with 20 mice in each group. The blank control group and the Shaoyaotang without model group received a single intraperitoneal injection of physiological saline (10 mg·kg-1), while the other five groups were given a single intraperitoneal injection of azoxymethane (AOM) (10 mg·kg-1). After 1 week, the mice were given drinking water containing 2% dextran sulfate sodium (DSS) for 1 week, followed by normal drinking water for 2 weeks. This cycle was repeated three times over a total period of 14 weeks to establish the CAC mouse model. Each group was administered gavage once daily for 2 weeks starting on the 14th day of the experiment, followed by three times a week until the end of the experiment. The body weight of the mice was recorded weekly. Mice were sacrificed on the 28th and 98th days of the experiment. After dissection, the colon length, colon weight, spleen weight, tumor size, and tumor number were measured. Hematoxylin and eosin (HE) staining was used to assess the pathological morphology of colon tumor tissue. Flow cytometry was used to detect MDSCs, regulatory T cells (Tregs), CD4+ T cells, CD8+ T cells, and the CD4+/CD8+ T cell ratio in the spleen. Immunohistochemistry was used to detect the expression levels of programmed cell death protein-1 (PD-1), programmed cell death ligand 1 (PD-L1), phosphorylated AMP-activated protein kinase (p-AMPK), phosphorylated nuclear factor-κB (p-NF-κB), and hypoxia-inducible factor 1α (HIF-1α) in the colon tissue. ResultsOn day 14, compared with the blank group, the body weight of the model group was significantly reduced (P<0.01), reaching its lowest point on day 28 (23.39 ± 0.95 ) g. On days 28 and 98, compared with the blank group, the colon length in the model group was significantly shortened (P<0.01), the colon index significantly increased (P<0.01), the spleen index significantly increased (P<0.01), and the tumor load significantly increased (P<0.01). HE staining showed that in the model group, tumor cells, a large number of inflammatory cell infiltrates, goblet cell disappearance, and crypt loss were observed. In each dose group of Shaoyaotang, the damage to the colonic mucosa, inflammatory cell infiltration, and crypt structure destruction were alleviated. Compared with the model group, the body weight of mice in each dose group of Shaoyaotang increased. On day 98, the colon length was significantly increased (P<0.01), the colon index significantly decreased (P<0.01), the spleen index significantly decreased (P<0.01), and the tumor burden significantly decreased (P<0.01) in each Shaoyaotang dose group. On days 28 and 98, MDSCs and Tregs in the spleen of the medium- and high-dose Shaoyaotang groups were significantly reduced (P<0.01), while CD4+ T cells and the CD4+/CD8+ T cell ratio were significantly increased (P<0.01). The proportion of CD8+ T cells in the spleen and the expression levels of PD-1 and PD-L1 in the colon tissues of mice in each Shaoyaotang dose group were significantly increased to varying degrees (P<0.05, P<0.01). On days 28 and 98, the expression of p-AMPK-positive cells in the colon tissue of the medium- and high-dose Shaoyaotang groups was significantly increased (P<0.01), while the expression of p-NF-κB and HIF-1α was significantly reduced (P<0.01). ConclusionShaoyaotang can regulate MDSC recruitment and modulate the immune function of T lymphocyte subsets to inhibit the occurrence and development of AOM/DSS-induced CAC in mice. The mechanism may be related to the activation of the AMPK/NF-κB/HIF-1α pathway.
5.Effect of refractive status before small incision lenticule extraction surgery on postoperative accommodative function
Meiluo ZHANG ; Chunyu TIAN ; Qinghua YANG ; Liexi JIA ; Hongtao ZHANG ; Manmei LI ; Zhengqing DU ; Zhuo ZENG ; Xue WANG ; Wei ZHANG
International Eye Science 2025;25(2):323-327
AIM: To investigate the abnormal conditions and change patterns of accommodative facility in patients with different refractive states before and after small incision lenticule extraction(SMILE)surgery.METHODS:A prospective clinical cohort study was conducted. A total of 59 patients(118 eyes)who underwent SMILE surgery and had visual function files established in our hospital from June to December 2023 were randomly selected, including 37 males and 22 females, aged 18-35 years(with an average age of 25.19±5.65 years). According to the preoperative spherical equivalent(SE), they were divided into two groups: the low-to-moderate myopia group(SE≥-6.00 DS)with 40 patients(80 eyes), and the high myopia group(SE<-6.00 DS)with 19 patients(38 eyes). The monocular and binocular accommodative facility before surgery and at 1 wk and 1 mo after surgery were compared, and the changes in accommodative facility before and after SMILE surgery in the two groups of patients were analyzed.RESULTS:All surgeries were completed successfully. In the low-to-moderate myopia group, 33 cases(66 eyes)completed the 1-month follow-up after surgery, with a loss to follow-up rate of 17.5%(7/40). In the high myopia group, 15 patients(30 eyes)completed the 1-month follow-up after surgery, with a loss to follow-up rate of 21.1%(4/19). After SMILE surgery, the uncorrected visual acuity and SE of both low-to-moderate myopia and high myopia were significantly improved(all P<0.05). The accommodative facility of the right eyes in all the patients at 1 mo after surgery was better than that before surgery and at 1 wk after surgery(P=0.002, 0.006), the accommodative facility of the left eyes was significantly increased at 1 mo after surgery than that at 1 wk after surgery(P=0.005), and the binocular accommodative facility at 1 mo after surgery was significantly increased compared with that before surgery(P<0.017). Furthermore, there were statistical significance in accommodative facility of the right eyes in the low-to-moderate group at 1 mo compared with that before surgery and at 1 wk after surgery(P=0.011, 0.004); it was significantly increased in the left eyes at 1 mo after surgery compared with that at 1 wk after surgery(P=0.001), and binocular accommodative facility at 1 mo after surgery was significantly better than that before surgery(P<0.001). Furthermore, there was no statistical significance in the right, left and binocular accommodative facility of patients in the high myopia group(all P>0.017).CONCLUSION: After SMILE surgery, the monocular accommodative facility shows a transient decrease and then exceeds the preoperative level at 1 mo after surgery, and the binocular accommodative facility gradually improves after surgery. SMILE surgery has a positive impact on the monocular and binocular accommodative facility in patients with low-to-moderate myopia, but has no significant impact on the accommodative facility in patients with high myopia. It is of clinical significance to strengthen the detection of monocular and binocular accommodative facility before and after SMILE surgery.
6.Influence of hybridization probe capture and amplicon library construction methods on HLA genotyping resolution level
Xiaoni YUAN ; Tengteng ZHANG ; Yang LI ; Xue JIANG ; Tianjie YANG ; Xiaojing BAO ; Jun HE
Chinese Journal of Blood Transfusion 2025;38(3):303-308
[Objective] To compare next generation sequencing (NGS) library construction technology between probe hybridization capture and amplicon methods, and analyze the influencing factors of HLA genotyping resolution level and its prospects in clinical applications. [Methods] A total of 207 clinical samples with known typing results and samples from the proficiency testing plan were selected. The conformity rate of HLA genotyping results, allele coverage and typing data analysis indicators were confirmed, and the effects of two library construction methods on the level of HLA genotyping discrimination were compared. [Results] The concordance rate of 207 samples with the feedback results of PT or prior well-characterized HLA genotypes was 100%. Among them, 91 samples were captured using hybridization probe capture method. Compared with the original amplicon method, the hybridization probe capture method can distinguish the alleles of DRB1 and DPB1 that cannot be determined in 13 samples. The allelic imbalance of DRB1, DPA1, and DQB1 loci in 6 samples was resolved. Three samples were found to have missed detection of alleles at the DQA1 and DQB1 loci. [Conclusion] The performance indicators of hybridization probe capture and amplicon performance confirmation meet the requirements of clinical detection of HLA genotyping, which provides an experimental method and basis for clinical application.
7.Research progress on correlation between hyperphosphatemia and calciphylaxis in patients with chronic kidney disease
Journal of Public Health and Preventive Medicine 2025;36(2):121-125
Hyperphosphatemia is a common complication in patients with advanced chronic kidney disease, which is an important factor causing secondary hyperparathyroidism, calcium-phosphorus deposition changes, vitamin D metabolism disorders and renal osteopathy. Calciphylaxis is a rare and highly fatal disease in clinical practice, which is generally believed to be related to abnormal calcium-phosphorus metabolism. Based on the results of previous studies, this paper summarizes the relationship between calciphylaxis and hyperphosphatemia, its occurrence mechanism, and prevention and treatment methods, in order to improve the awareness and attention of this disease.
8.Effect of different liver biopsy needle track management on Yttrium-90 selective internal radiation therapy on liver cancer
Zhenyuan XU ; Xue LIU ; Shuqun SHEN ; Zhijia XU ; Changkai LI ; Yefa YANG
Chinese Journal of Clinical Medicine 2025;32(2):288-294
Objective To explore the effect of different needle track management on Yttrium-90 microsphere selective internal radiation therapy (90Y-SIRT) on liver cancer after liver biopsy. Methods A retrospective analysis was conducted on the clinical data of 21 patients with liver cancer who underwent Technetium-99m-macroaggregated albumin (99mTc-MAA) evaluation and 90Y-SIRT after liver biopsy from June 2023 to December 2024. The methods of needle track management, hepatic arteriovenous shunting, and lung shunt fraction (LSF) were recorded. The occurrence of hepatic arteriovenous fistula (HAVF), as well as the corresponding countermeasures were analyzed. Results Among the 21 liver cancer patients, 7 cases (medical glue group) underwent embolization of the needle tract with medical glue (N-butyl 2-cyanoacrylate [NBCA]) immediately after biopsy, and no significant HAVF was observed during the 99mTc-MAA tests; 14 cases (non-medical glue group) were treated with delayed needle extraction or gelatin sponge particle blocking after biopsy, among which 7 cases developed significant HAVF, and the fistulas were treated with NBCA. The LSF of the medical glue group was significantly lower than that of the non-medical glue group ([7.06±2.33] % vs [12.43±7.73] %, P=0.037). All 21 patients successfully completed 90Y-SIRT. Conclusions Liver biopsy may affect 90Y-SIRT by causing iatrogenic HAVF. Immediate NBCA-embolization of the needle tract after biopsy or timely NBCA-embolization of fistulas during 99mTc-MAA tests may reduce the impact.
9.Effects of Spleen Deficiency on Lipid Metabolism in Hyperlipidemia Model Rats Based on Gut Microbiota Sequencing and Fecal Metabolomics
Xue LENG ; Qi WANG ; Yang LI ; Xintong LI
Journal of Traditional Chinese Medicine 2025;66(10):1046-1056
ObjectiveTo explore the potential mechanisms by which spleen deficiency affects lipid metabolism in hyperlipidemia, from the perspective of gut microbiota and fecal endogenous metabolites. MethodsEighteen Sprague-Dawley (SD) rats were randomly divided into control group, hyperlipidemia group, and spleen-deficiency with hyperlipidemia group, with 6 rats in each group. The control group was fed with standard diet; the hyperlipi-demia group was given high-fat diet to induce hyperlipidemia model; and the spleen-deficiency with hyperlipidemia group received combination of high-fat diet, irregular feeding, and exercise restriction to induce the model. After 12 weeks of modeling, serum lipid levels including total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were measured. 16S rRNA gene sequencing was used to analyze gut microbiota composition in fecal samples, and fecal metabolites were analyzed using high-performance liquid chromatography-mass spectrometry (HPLC-MS). Differential metabolites and microbial taxa were screened for pathway enrichment and functional prediction analysis, followed by correlation analysis. ResultsCompared with the control group, rats in the hyperlipidemia and spleen-deficiency with hyperlipidemia groups showed significantly increased serum TG, TC, and LDL-C levels, and decreased HDL-C levels (P<0.01). Compared with the hyperlipidemia group, the spleen-deficiency with hyperlipidemia group showed further increases in TG, TC, and LDL-C and further decrease in HDL-C (P<0.05 or P<0.01). Gut microbiota analysis revealed 3,066 unique species in the control group, 2,637 in the hyperlipidemia group, and 1,581 in the spleen-deficiency group. Chao1, Simpson, and Shannon indices were significantly reduced in the spleen-deficiency group compared with the hyperli-pidemia group, with an increased Firmicutes/Bacteroidetes ratio. Differentially abundant genera such as Romboutsia, Lactobacillus, Clostridium, Allobaculum, and Xylanibacter were significantly upregulated (P<0.05 or P<0.01). Metabolomics identified 25 differential metabolites in feces of spleen-deficient rats, with 18 downregulated and 7 upregulated. Key enriched pathways included serotonergic synapse, nucleotide metabolism, vascular smooth muscle contraction, and arachidonic acid metabolism. Spearman correlation analysis showed significant positive correlations between Romboutsia and Desulfovibrio and metabolites such as digalactosyldiacylglycerol (48∶5), dehydrated artemetin, lysophosphatidylcholine (26∶4), and glucuronosyldiacylglycerol (46∶5); Clostridium was positively correlated with cyclopassifloric acid E1, digalactosyldiacylglycerol (48∶5), and lysophosphatidylcholine (26∶4); Xylanibacter was positively correlated with digalactosyldiacylglycerol (48∶5), dehydrated artemetin, and lysophosphatidylcholine (26∶4). ConclusionSpleen deficiency can further alter gut microbiota composition in hyperlipi-demia model rats, leading to microbial dysbiosis and metabolic disturbances that aggravate lipid metabolism disorders. This mechanism may be associated with changes in pathways such as serotonergic synapse, nucleotide metabolism, vascular smooth muscle contraction, and arachidonic acid metabolism.
10.PDGF-C: an Emerging Target in The Treatment of Organ Fibrosis
Chao YANG ; Zi-Yi SONG ; Chang-Xin WANG ; Yuan-Yuan KUANG ; Yi-Jing CHENG ; Ke-Xin REN ; Xue LI ; Yan LIN
Progress in Biochemistry and Biophysics 2025;52(5):1059-1069
Fibrosis, the pathological scarring of vital organs, is a severe and often irreversible condition that leads to progressive organ dysfunction. It is particularly pronounced in organs like the liver, kidneys, lungs, and heart. Despite its clinical significance, the full understanding of its etiology and complex pathogenesis remains incomplete, posing substantial challenges to diagnosing, treating, and preventing the progression of fibrosis. Among the various molecular players involved, platelet-derived growth factor-C (PDGF-C) has emerged as a crucial factor in fibrotic diseases, contributing to the pathological transformation of tissues in several key organs. PDGF-C is a member of the PDGFs family of growth factors and is synthesized and secreted by various cell types, including fibroblasts, smooth muscle cells, and endothelial cells. It acts through both autocrine and paracrine mechanisms, exerting its biological effects by binding to and activating the PDGF receptors (PDGFRs), specifically PDGFRα and PDGFRβ. This binding triggers multiple intracellular signaling pathways, such as JAK/STAT, PI3K/AKT and Ras-MAPK pathways. which are integral to the regulation of cell proliferation, survival, migration, and fibrosis. Notably, PDGF-C has been shown to promote the proliferation and migration of fibroblasts, key effector cells in the fibrotic process, thus accelerating the accumulation of extracellular matrix components and the formation of fibrotic tissue. Numerous studies have documented an upregulation of PDGF-C expression in various fibrotic diseases, suggesting its significant role in the initiation and progression of fibrosis. For instance, in liver fibrosis, PDGF-C stimulates hepatic stellate cell activation, contributing to the excessive deposition of collagen and other extracellular matrix proteins. Similarly, in pulmonary fibrosis, PDGF-C enhances the migration of fibroblasts into the damaged areas of lungs, thereby worsening the pathological process. Such findings highlight the pivotal role of PDGF-C in fibrotic diseases and underscore its potential as a therapeutic target for these conditions. Given its central role in the pathogenesis of fibrosis, PDGF-C has become an attractive target for therapeutic intervention. Several studies have focused on developing inhibitors that block the PDGF-C/PDGFR signaling pathway. These inhibitors aim to reduce fibroblast activation, prevent the excessive accumulation of extracellular matrix components, and halt the progression of fibrosis. Preclinical studies have demonstrated the efficacy of such inhibitors in animal models of liver, kidney, and lung fibrosis, with promising results in reducing fibrotic lesions and improving organ function. Furthermore, several clinical inhibitors, such as Olaratumab and Seralutinib, are ongoing to assess the safety and efficacy of these inhibitors in human patients, offering hope for novel therapeutic options in the treatment of fibrotic diseases. In conclusion, PDGF-C plays a critical role in the development and progression of fibrosis in vital organs. Its ability to regulate fibroblast activity and influence key signaling pathways makes it a promising target for therapeutic strategies aiming at combating fibrosis. Ongoing research into the regulation of PDGF-C expression and the development of PDGF-C/PDGFR inhibitors holds the potential to offer new insights and approaches for the diagnosis, treatment, and prevention of fibrotic diseases. Ultimately, these efforts may lead to the development of more effective and targeted therapies that can mitigate the impact of fibrosis and improve patient outcomes.


Result Analysis
Print
Save
E-mail