1.Controllability Analysis of Structural Brain Networks in Young Smokers
Jing-Jing DING ; Fang DONG ; Hong-De WANG ; Kai YUAN ; Yong-Xin CHENG ; Juan WANG ; Yu-Xin MA ; Ting XUE ; Da-Hua YU
Progress in Biochemistry and Biophysics 2025;52(1):182-193
ObjectiveThe controllability changes of structural brain network were explored based on the control and brain network theory in young smokers, this may reveal that the controllability indicators can serve as a powerful factor to predict the sleep status in young smokers. MethodsFifty young smokers and 51 healthy controls from Inner Mongolia University of Science and Technology were enrolled. Diffusion tensor imaging (DTI) was used to construct structural brain network based on fractional anisotropy (FA) weight matrix. According to the control and brain network theory, the average controllability and the modal controllability were calculated. Two-sample t-test was used to compare the differences between the groups and Pearson correlation analysis to examine the correlation between significant average controllability and modal controllability with Fagerström Test of Nicotine Dependence (FTND) in young smokers. The nodes with the controllability score in the top 10% were selected as the super-controllers. Finally, we used BP neural network to predict the Pittsburgh Sleep Quality Index (PSQI) in young smokers. ResultsThe average controllability of dorsolateral superior frontal gyrus, supplementary motor area, lenticular nucleus putamen, and lenticular nucleus pallidum, and the modal controllability of orbital inferior frontal gyrus, supplementary motor area, gyrus rectus, and posterior cingulate gyrus in the young smokers’ group, were all significantly different from those of the healthy controls group (P<0.05). The average controllability of the right supplementary motor area (SMA.R) in the young smokers group was positively correlated with FTND (r=0.393 0, P=0.004 8), while modal controllability was negatively correlated with FTND (r=-0.330 1, P=0.019 2). ConclusionThe controllability of structural brain network in young smokers is abnormal. which may serve as an indicator to predict sleep condition. It may provide the imaging evidence for evaluating the cognitive function impairment in young smokers.
2.PDGF-C: an Emerging Target in The Treatment of Organ Fibrosis
Chao YANG ; Zi-Yi SONG ; Chang-Xin WANG ; Yuan-Yuan KUANG ; Yi-Jing CHENG ; Ke-Xin REN ; Xue LI ; Yan LIN
Progress in Biochemistry and Biophysics 2025;52(5):1059-1069
Fibrosis, the pathological scarring of vital organs, is a severe and often irreversible condition that leads to progressive organ dysfunction. It is particularly pronounced in organs like the liver, kidneys, lungs, and heart. Despite its clinical significance, the full understanding of its etiology and complex pathogenesis remains incomplete, posing substantial challenges to diagnosing, treating, and preventing the progression of fibrosis. Among the various molecular players involved, platelet-derived growth factor-C (PDGF-C) has emerged as a crucial factor in fibrotic diseases, contributing to the pathological transformation of tissues in several key organs. PDGF-C is a member of the PDGFs family of growth factors and is synthesized and secreted by various cell types, including fibroblasts, smooth muscle cells, and endothelial cells. It acts through both autocrine and paracrine mechanisms, exerting its biological effects by binding to and activating the PDGF receptors (PDGFRs), specifically PDGFRα and PDGFRβ. This binding triggers multiple intracellular signaling pathways, such as JAK/STAT, PI3K/AKT and Ras-MAPK pathways. which are integral to the regulation of cell proliferation, survival, migration, and fibrosis. Notably, PDGF-C has been shown to promote the proliferation and migration of fibroblasts, key effector cells in the fibrotic process, thus accelerating the accumulation of extracellular matrix components and the formation of fibrotic tissue. Numerous studies have documented an upregulation of PDGF-C expression in various fibrotic diseases, suggesting its significant role in the initiation and progression of fibrosis. For instance, in liver fibrosis, PDGF-C stimulates hepatic stellate cell activation, contributing to the excessive deposition of collagen and other extracellular matrix proteins. Similarly, in pulmonary fibrosis, PDGF-C enhances the migration of fibroblasts into the damaged areas of lungs, thereby worsening the pathological process. Such findings highlight the pivotal role of PDGF-C in fibrotic diseases and underscore its potential as a therapeutic target for these conditions. Given its central role in the pathogenesis of fibrosis, PDGF-C has become an attractive target for therapeutic intervention. Several studies have focused on developing inhibitors that block the PDGF-C/PDGFR signaling pathway. These inhibitors aim to reduce fibroblast activation, prevent the excessive accumulation of extracellular matrix components, and halt the progression of fibrosis. Preclinical studies have demonstrated the efficacy of such inhibitors in animal models of liver, kidney, and lung fibrosis, with promising results in reducing fibrotic lesions and improving organ function. Furthermore, several clinical inhibitors, such as Olaratumab and Seralutinib, are ongoing to assess the safety and efficacy of these inhibitors in human patients, offering hope for novel therapeutic options in the treatment of fibrotic diseases. In conclusion, PDGF-C plays a critical role in the development and progression of fibrosis in vital organs. Its ability to regulate fibroblast activity and influence key signaling pathways makes it a promising target for therapeutic strategies aiming at combating fibrosis. Ongoing research into the regulation of PDGF-C expression and the development of PDGF-C/PDGFR inhibitors holds the potential to offer new insights and approaches for the diagnosis, treatment, and prevention of fibrotic diseases. Ultimately, these efforts may lead to the development of more effective and targeted therapies that can mitigate the impact of fibrosis and improve patient outcomes.
3.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
4.Cold stimulation regulates lipid metabolism and the secretion of exosomes from subcutaneous adipose tissue in mice.
Shuo KE ; Li XU ; Rui-Xue SHI ; Jia-Qi WANG ; Le CUI ; Yuan JI ; Jing LI ; Xiao-Hong JIANG
Acta Physiologica Sinica 2025;77(2):231-240
Cold has been a long-term survival challenge in the evolutionary process of mammals. In response to cold stress, in addition to brown adipose tissue (BAT) dissipating energy as heat through glucose and lipid oxidation to maintain body temperature, cold stimulation can strongly activate thermogenesis and energy expenditure in beige fat cells, which are widely distributed in the subcutaneous layer. However, the effects of cold stimulation on other tissues and systemic lipid metabolism remain unclear. Our previous research indicated that, under cold stress, BAT not only produces heat but also secretes numerous exosomes to mediate BAT-liver crosstalk. Whether subcutaneous fat has a similar mechanism is still unknown. Therefore, this study aimed to investigate the alterations in lipid metabolism across various tissues under cold exposure and to explore whether subcutaneous fat regulates systemic glucose and lipid metabolism via exosomes, thereby elucidating the regulatory mechanisms of lipid metabolism homeostasis under physiological stress. RT-qPCR, Western blot, and H&E staining methods were used to investigate the physiological changes in lipid metabolism in the serum, liver, epididymal white adipose tissue, and subcutaneous fat of mice under cold stimulation. The results revealed that cold exposure significantly enhanced the thermogenic activity of subcutaneous adipose tissue and markedly increased exosome secretion. These exosomes were efficiently taken up by hepatocytes, where they profoundly influenced hepatic lipid metabolism, as evidenced by alterations in the expression levels of key genes involved in lipid synthesis and catabolism pathways. This study has unveiled a novel mechanism by which subcutaneous fat regulates lipid metabolism through exosome secretion under cold stimulation, providing new insights into the systemic regulatory role of beige adipocytes under cold stress and offering a theoretical basis for the development of new therapeutic strategies for obesity and metabolic diseases.
Animals
;
Lipid Metabolism/physiology*
;
Mice
;
Exosomes/metabolism*
;
Cold Temperature
;
Subcutaneous Fat/physiology*
;
Thermogenesis/physiology*
;
Adipose Tissue, Brown/metabolism*
;
Male
5.Expert consensus on management of instrument separation in root canal therapy.
Yi FAN ; Yuan GAO ; Xiangzhu WANG ; Bing FAN ; Zhi CHEN ; Qing YU ; Ming XUE ; Xiaoyan WANG ; Zhengwei HUANG ; Deqin YANG ; Zhengmei LIN ; Yihuai PAN ; Jin ZHAO ; Jinhua YU ; Zhuo CHEN ; Sijing XIE ; He YUAN ; Kehua QUE ; Shuang PAN ; Xiaojing HUANG ; Jun LUO ; Xiuping MENG ; Jin ZHANG ; Yi DU ; Lei ZHANG ; Hong LI ; Wenxia CHEN ; Jiayuan WU ; Xin XU ; Jing ZOU ; Jiyao LI ; Dingming HUANG ; Lei CHENG ; Tiemei WANG ; Benxiang HOU ; Xuedong ZHOU
International Journal of Oral Science 2025;17(1):46-46
Instrument separation is a critical complication during root canal therapy, impacting treatment success and long-term tooth preservation. The etiology of instrument separation is multifactorial, involving the intricate anatomy of the root canal system, instrument-related factors, and instrumentation techniques. Instrument separation can hinder thorough cleaning, shaping, and obturation of the root canal, posing challenges to successful treatment outcomes. Although retrieval of separated instrument is often feasible, it carries risks including perforation, excessive removal of tooth structure and root fractures. Effective management of separated instruments requires a comprehensive understanding of the contributing factors, meticulous preoperative assessment, and precise evaluation of the retrieval difficulty. The application of appropriate retrieval techniques is essential to minimize complications and optimize clinical outcomes. The current manuscript provides a framework for understanding the causes, risk factors, and clinical management principles of instrument separation. By integrating effective strategies, endodontists can enhance decision-making, improve endodontic treatment success and ensure the preservation of natural dentition.
Humans
;
Root Canal Therapy/adverse effects*
;
Consensus
;
Root Canal Preparation/adverse effects*
6.Deciphering the Role of VIM, STX8, and MIF in Pneumoconiosis Susceptibility: A Mendelian Randomization Analysis of the Lung-Gut Axis and Multi-Omics Insights from European and East Asian Populations.
Chen Wei ZHANG ; Bin Bin WAN ; Yu Kai ZHANG ; Tao XIONG ; Yi Shan LI ; Xue Sen SU ; Gang LIU ; Yang Yang WEI ; Yuan Yuan SUN ; Jing Fen ZHANG ; Xiao YU ; Yi Wei SHI
Biomedical and Environmental Sciences 2025;38(10):1270-1286
OBJECTIVE:
Pneumoconiosis, a lung disease caused by irreversible fibrosis, represents a significant public health burden. This study investigates the causal relationships between gut microbiota, gene methylation, gene expression, protein levels, and pneumoconiosis using a multi-omics approach and Mendelian randomization (MR).
METHODS:
We analyzed gut microbiota data from MiBioGen and Esteban et al. to assess their potential causal effects on pneumoconiosis subtypes (asbestosis, silicosis, and inorganic pneumoconiosis) using conventional and summary-data-based MR (SMR). Gene methylation and expression data from Genotype-Tissue Expression and eQTLGen, along with protein level data from deCODE and UK Biobank Pharma Proteomics Project, were examined in relation to pneumoconiosis data from FinnGen. To validate our findings, we assessed self-measured gut flora from a pneumoconiosis cohort and performed fine mapping, drug prediction, molecular docking, and Phenome-Wide Association Studies to explore relevant phenotypes of key genes.
RESULTS:
Three core gut microorganisms were identified: Romboutsia ( OR = 0.249) as a protective factor against silicosis, Pasteurellaceae ( OR = 3.207) and Haemophilus parainfluenzae ( OR = 2.343) as risk factors for inorganic pneumoconiosis. Additionally, mapping and quantitative trait loci analyses revealed that the genes VIM, STX8, and MIF were significantly associated with pneumoconiosis risk.
CONCLUSIONS
This multi-omics study highlights the associations between gut microbiota and key genes ( VIM, STX8, MIF) with pneumoconiosis, offering insights into potential therapeutic targets and personalized treatment strategies.
Humans
;
Male
;
East Asian People/genetics*
;
Europe
;
Gastrointestinal Microbiome
;
Lung
;
Macrophage Migration-Inhibitory Factors/metabolism*
;
Mendelian Randomization Analysis
;
Multiomics
;
Pneumoconiosis/microbiology*
;
Intramolecular Oxidoreductases
7.Research status of quercetin-mediated MAPK signaling pathway in prevention and treatment of osteoporosis
Ke-Xin YUAN ; Xing-Wen XIE ; Ding-Peng LI ; Yi-Sheng JING ; Wei-Wei HUANG ; Xue-Tao WANG ; Hao-Dong YANG ; Wen YAN ; Yong-Wu MA
The Chinese Journal of Clinical Pharmacology 2024;40(9):1375-1379
Quercetin can mediate the activation of mitogen-activated protein kinase(MAPK)signaling pathways to prevent osteoporosis(OP).This paper comprehensively discusses the interrelationship between MAPK and osteoporosis-related cells based on the latest domestic and international research.Additionally,it elucidates the research progress of quercetin in mediating the MAPK signaling pathway for OP prevention.The aim is to provide an effective foundation for the clinical prevention and treatment of OP and the in-depth development of quercetin.
8.Bioequivalence study of ritonavir tablets in Chinese healthy subjects
Yuan-Yuan XU ; Chuan-Shu WANG ; Shao-Chun CHEN ; Jia-Xiang DING ; Xue-Feng WANG ; He-Yue WANG ; Jing XIE ; Huan ZHOU
The Chinese Journal of Clinical Pharmacology 2024;40(10):1502-1506
Objective To evaluate the bioequivalence of a single oral dose of ritonavir in fasted and fed conditions in healthy Chinese adult subjects with the test and reference formulations.Methods A single-center,open-label,randomized,single-dose,two-periods,two-sequence crossover design was used,and 64 subjects were enrolled in both the fasted and fed groups.The subjects received 100 mg of the test preparation or reference preparation orally per cycle,and the drug concentration of ritonavir in plasma was detected using the high performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS)method.Pharmacokinetic parameters were estimated by a non-compartment model,and SAS 9.4 software was used for statistical analysis.Results Arithmetic mean values of the main pharmacokinetic parameters of the subject formulation of ritonavir tablets and the reference formulation in the fasting group:Cmax were(791.90±400.20)and(809.60±449.14)ng·mL-1;AUC0_t were(6 072.61±2 631.98)and(6 296.30±3 388.95)ng·h·mL-1;AUC0-∞ were(6 129.59±2 655.57)and(6 347.26±3 434.12)ng·h·mL-1,respectively.Arithmetic mean values of the main pharmacokinetic parameters of the subject formulation of ritonavir tablets and the reference formulation in the fed group:Cmax were(512.37±233.60)and(521.74±223.87)ng·mL-1;AUC0_t were(4 203.43±2 221.33)and(4 200.13±1 993.50)ng·h·mL-1;AUC0_∞ were(4 259.21±2 266.88)and(4 259.63±2 044.12)ng·h·mL-1.The 90%confidence intervals for the geometric mean ratios of Cmax,AUC0_t and AUC0_∞ of the prototype drug ritonavir in plasma after oral administration of 100 mg of the test and reference formulations of ritonavir tablets under fasting and fed conditions fell within the 80.00%to 125.00%equivalence interval.Conclusion The test and reference formulations of ritonavir tablets were bioequivalent under fasting and postprandial conditions.
9.Relationship between processed food consumption and blood pressure of students in a university in Yunnan Province
LIU Yueqin, YANG Jieru, DENG Feifei, XU Zhen, ZI Chengyuan, KONG Jing, XUE Yanfeng, WANG Yuan, WU Huijuan, XU Honglü ;
Chinese Journal of School Health 2024;45(9):1340-1344
Objective:
To explore the relationship between processed food consumption and blood pressure level of students in a university in Yunnan Province, so as to provide the reference for preventing hypertension in university students.
Methods:
In October 2021, a cluster sampling method was used to select 4 781 freshmen from a university in Kunming, Yunnan Province. The frequency of processed food consumption of university students was assessed by using the dietary frequency questionnaire, and height, weight and blood pressure were measured. Mann-Whitney test and Kruskal-Wallis test were used to compare the differences in blood pressure level of university students with different demographic variables, and the association between processed food consumption and blood pressure level was analyzed with a generalized linear model.
Results:
Among the students of a university in Yunnan Province, the detection rates of systolic prehypertension and hypertension were 33.86% and 1.23%, and the detection rates of diastolic prehypertension were 32.13% and hypertension 7.22%. The results of generalized linear model analysis showed that after controlling for demographic variables and other variables that might affect the blood pressure level of university students, the consumption of processed food (bread and cake: β =0.15, 95% CI =0.01-0.29) and ultra processed food (coffee beverage: β =-0.29, 95% CI =-0.54--0.03) were associated with systolic blood pressure level( P <0.05). The consumption of processed food (salted duck egg: β =0.21, 95% CI =0.01-0.41) was correlated with the diastolic blood pressure of college students ( P <0.05).
Conclusions
Processed food consumption in university students may increase the risk of high blood pressure.The education of healthy eating among college students should be strengthened to reduce the consumption of processed foods.
10.Application and Mechanism of Drugs Targeting Short Peptide in The Treatment Pancreatic Cancer
Yuan LIU ; Xue-Ying DONG ; Ce-Fan ZHOU ; Jing-Feng TANG
Progress in Biochemistry and Biophysics 2024;51(9):2101-2114
Pancreatic cancer (PC) is a highly fatal disease which originated from pancreatic epithelial and acinar cells, and the survival rate of pancreatic cancer patients is only about 12%. Approximately 95% of pancreatic cancer presents as ductal adenocarcinoma (PDAC). Pancreatic cancer is characterized by high aggressiveness, rapid progression and progression, and high resistance to treatment. Common somatic mutated genes in the early stage of pancreatic cancer include KRAS, CDKN2A, TP53, and SMAD4. Most pancreatic cancer patients are affected by environmental risk factors such as age, sex and diet. Malignant pancreatic cancer is associated with non-invasive, preneoplastic lesions that are thoughted to be precursors, such as pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasm (IPMN) and mucinous cystadenoma (MCN). In recent years, people have gradually improved the therapy and diagnosis of pancreatic cancer, and the contribution of imaging technology, which enhancing the usage of minimally invasive pancreatectomy that typically includes pancreaticoduodenectomy and distal pancreatectomy. However, combined administration of the chemotherapeutic gemcitabine and erlotinib is still considered a potential first-line treatment for advanced pancreatic cancer, but the development of chemoresistance often leads to poor therapeutic outcomes. Based on the current research progress for pancreatic cancer, its treatment currently remains one of the most important challenges in the medical field. Although some new treatment options have been provided, there were minor clinical success achieved and therefore new safe and effective therapies of pancreatic cancer are still an urgent need for patients. Among these new therapies for pancreatic cancer, short peptide-based treatment protocols have attracted great attention. Peptide is a compound formed by linking α-amino acids together in peptide chains. It is also an intermediate product of proteolysis. The short peptide-based therapy has many advantages such as precise targeting, easy preparation and low toxicity. Short peptides usually act as tumor suppressors by targeting and recognizing tumor-specific expressed proteins. Currently, there is an increased interest in peptides in pharmaceutical and development research, and approximate 140 peptide therapeutics are currently being evaluated in clinical trials. These peptides provide excellent prospects for targeted drug delivery because of their high selectivity, specificity and simplicity of modification. Peptides have high bioactivity and excellent biodegradability. Clinically, short peptides are increasingly used as combination drugs with chemotherapy for tumor treatment. Peptides can induce cancer cell death by numerous mechanisms and peptides have emerged as a promising drug for the treatment of pancreatic cancer. Here we mainly review the roles of peptides on Wnt/β-catenin, NF-κB, autophagy, and the use of peptides as tracer in pancreatic cancer. We also analyzed the benefits and disadvantages existing in the development process of short peptides, which provide the feasibility of targeted short peptides to become new therapeutic approaches for cancer therapy.


Result Analysis
Print
Save
E-mail