1.Promotion of Angiogenesis by Colorectal Cancer Cell LoVo Derived-exosomes Through Transferring pEGFR
Ya-Jie CHENG ; Xue-Tong ZHOU ; Rui WANG ; Jin FANG
Progress in Biochemistry and Biophysics 2025;52(5):1229-1240
ObjectiveThis study sought to investigate the impact of exosomes derived from LoVo cells (LoVo-Exos) in colorectal cancer (CRC) on tumor angiogenesis, as well as to elucidate the potential molecular mechanisms underlying their pro-angiogenic effects. MethodsLoVo-Exos were isolated via ultracentrifugation, and their internalization into recipient human umbilical vein endothelial cells (HUVECs) was visualized using confocal microscopy. The influence of LoVo-Exos on angiogenesis was assessed through an in vitro tube formation assay. Additionally, the pro-angiogenic effects of LoVo-Exos were evaluated in vivo using a matrix gluing assay in mice. To investigate the molecular mechanisms through which LoVo-Exos facilitate angiogenesis, Western blot analysis was employed to examine the transfer of pEGFR by LoVo-Exos into recipient cells. Both Western blot and ELISA were utilized to assess the expression levels of key signaling proteins within the EGFR-ERK pathway, as well as the expression of downstream angiogenic core molecules. Furthermore, the impact of EGFR knockdown and ERK inhibitor treatment on angiogenesis was evaluated, with subsequent analysis of the expression of downstream angiogenic core molecules following these interventions. ResultsConfocal microscopy demonstrated the internalization of LoVo-Exos into HUVECs. In vitro angiogenesis assays further indicated that LoVo-Exos significantly enhanced the formation of tubular structures in HUVECs. Additionally, macroscopic examination of subcutaneous matrix plug formation in mice revealed a substantial increase in vascular-like structures within the matrix plugs following the administration of LoVo-Exos, compared to the PBS control group. Hematoxylin and eosin (HE) staining revealed the presence of erythrocyte-filled microvessels within the matrix plugs combined with LoVo-Exos. Furthermore, immunohistochemical analysis demonstrated the expression of the endothelial cell marker CD31 in these matrix plugs. The presence of CD31-positive cells in the LoVo-Exos-treated matrix plugs was associated with a significant enhancement in the formation of luminal structures. These findings suggest that LoVo-Exos facilitate the in vivo development of vascular-like structures. Subsequent investigations demonstrated that LoVo-Exos facilitated the delivery of pEGFR to HUVEC, thereby enhancing angiogenesis. Conversely, LoVo-Exos with EGFR knockdown exhibited a diminished capacity to promote angiogenesis, an effect that was further attenuated by the ERK phosphorylation inhibitor U0126. Western blot analysis assessing the activation of the EGFR-ERK signaling pathway in HUVEC indicated that LoVo-Exos augmented angiogenesis through the activation of this pathway. Furthermore, analysis of the impact of LoVo-Exos on the expression of downstream angiogenic core molecules revealed an increase in interleukin-8 (IL-8) secretion in HUVEC. The enhancement observed was diminished in LoVo-Exos following EGFR knockdown, and this reduction was counteracted by the ERK phosphorylation inhibitor U0126. ConclusionThe underlying mechanism may involve the delivery of pEGFR in LoVo-Exos to HUVECs, leading to increased IL-8 secretion via the EGFR-ERK signaling pathway, thereby enhancing the angiogenic potential of HUVECs. This finding may offer new insights into the mechanisms underlying cancer metastasis.
2.Banxia Xiexin Decoction reshapes tryptophan metabolism to inhibit progression of colon cancer.
Yi-Fang JIANG ; Yu-Qing HUANG ; Heng-Zhou LAI ; Xue-Ke LI ; Liu-Yi LONG ; Feng-Ming YOU ; Qi-Xuan KUANG
China Journal of Chinese Materia Medica 2025;50(5):1310-1320
This study explores the effect and mechanism of Banxia Xiexin Decoction(BXD) in inhibiting colon cancer progression by reshaping tryptophan metabolism. Balb/c mice were assigned into control, model, low-dose BXD(BXD-L), and high-dose BXD(BXD-H) groups. Except the control group, the other groups were subcutaneously injected with CT26-Luc cells for the modeling of colon cancer, which was followed by the intervention with BXD. Small animal live imaging was employed to monitor tumor growth, and the tumor volume and weight were measured. Hematoxylin-eosin(HE) staining was used to observe the pathological changes in mouse tumors. Immunohistochemistry was used to detect Ki67 expression in tumors. Immunofluorescence and flow cytometry were used to detect the infiltration and number changes of CD3~+/CD8~+ T cells in the tumor tissue. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of interferon-gamma(IFN-γ) and interleukin-2(IL-2) in tumors. Targeted metabolomics was employed to measure the level of tryptophan(Trp) in the serum, and the Trp content in the tumor tissue was measured. Western blot and RT-qPCR were employed to determine the protein and mRNA levels, respectively, of indoleamine 2,3-dioxygenase 1(IDO1), MYC proto-oncogene, and solute carrier family 7 member 5(SLC7A5) in the tumor tissue. Additionally, a co-culture model with CT26 cells and CD8~+ T cells was established in vitro and treated with the BXD-containing serum. The cell counting kit-8(CCK-8) assay was used to examine the viability of CT26 cells. The content of Trp in CT26 cells and CD8~+ T cells, as well as the secretion of IFN-γ and IL-2 by CD8~+ T cells, was measured. RT-qPCR was used to determine the mRNA levels of MYC and SLC7A5 in CT26 cells. The results showed that BXD significantly inhibited the tumor growth, reduced the tumor weight, and decreased the tumor volume in the model mice. In addition, the model mice showed sparse arrangement of tumor cells, varying degrees of patchy necrosis, and downregulated expression of Ki67 in the tumor tissue. BXD elevated the levels of IFN-γ and IL-2 in the tumor tissue, while upregulating the ratio of CD3~+/CD8~+ T cells and lowering the levels of Trp, IDO1, MYC, and SLC7A5. The co-culture experiment showed that BXD-containing serum reduced Trp uptake by CT26 cells, increased Trp content in CD8~+T cells, enhanced IL-2 and IFN-γ secretion of CD8~+T cells, and down-regulated the mRNA levels of MYC and SLC7A5 in CT26 cells. In summary, BXD can inhibit the MYC/SLC7A5 pathway to reshape Trp metabolism and adjust Trp uptake by CD8~+ T cells to enhance the cytotoxicity, thereby inhibiting the development of colon cancer.
Animals
;
Tryptophan/metabolism*
;
Colonic Neoplasms/pathology*
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice, Inbred BALB C
;
Humans
;
Cell Line, Tumor
;
Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism*
;
Female
;
Disease Progression
;
Cell Proliferation/drug effects*
;
Proto-Oncogene Mas
;
Male
3.USP25 ameliorates vascular remodeling by deubiquitinating FOXO3 and promoting autophagic degradation of FOXO3.
Yanghao CHEN ; Bozhi YE ; Diyun XU ; Wante LIN ; Zimin FANG ; Xuefeng QU ; Xue HAN ; Wu LUO ; Chen CHEN ; Weijian HUANG ; Hao ZHOU ; Gaojun WU ; Yi WANG ; Guang LIANG
Acta Pharmaceutica Sinica B 2025;15(3):1643-1658
Long-term hypertension causes excessive vascular remodeling and leads to adverse cardiovascular events. Balance of ubiquitination and deubiquitination has been linked to several chronic conditions, including pathological vascular remodeling. In this study, we discovered that the expression of ubiquitin-specific protease 25 (USP25) is significantly up-regulated in angiotensin II (Ang II)-challenged mouse aorta. Knockout of Usp25 augments Ang II-induced vascular injury such as fibrosis and endothelial to mesenchymal transition (EndMT). Mechanistically, we found that USP25 interacts directly with Forkhead box O3 (FOXO3) and removes the K63-linked ubiquitin chain on the K258 site of FOXO3. We also showed that this USP25-mediated deubiquitination of FOXO3 increases its binding to light chain 3 beta isoform and autophagosomic-lysosomal degradation of FOXO3. In addition, we further validated the biological function of USP25 by overexpressing USP25 in the mouse aorta with AAV9 vectors. Our studies identified FOXO3 as a new substrate of USP25 and showed that USP25 may be a potential therapeutic target for excessive vascular remodeling-associated diseases.
4.Genome-wide investigation of transcription factor footprints and dynamics using cFOOT-seq.
Heng WANG ; Ang WU ; Meng-Chen YANG ; Di ZHOU ; Xiyang CHEN ; Zhifei SHI ; Yiqun ZHANG ; Yu-Xin LIU ; Kai CHEN ; Xiaosong WANG ; Xiao-Fang CHENG ; Baodan HE ; Yutao FU ; Lan KANG ; Yujun HOU ; Kun CHEN ; Shan BIAN ; Juan TANG ; Jianhuang XUE ; Chenfei WANG ; Xiaoyu LIU ; Jiejun SHI ; Shaorong GAO ; Jia-Min ZHANG
Protein & Cell 2025;16(11):932-952
Gene regulation relies on the precise binding of transcription factors (TFs) at regulatory elements, but simultaneously detecting hundreds of TFs on chromatin is challenging. We developed cFOOT-seq, a cytosine deaminase-based TF footprinting assay, for high-resolution, quantitative genome-wide assessment of TF binding in both open and closed chromatin regions, even with small cell numbers. By utilizing the dsDNA deaminase SsdAtox, cFOOT-seq converts accessible cytosines to uracil while preserving genomic integrity, making it compatible with techniques like ATAC-seq for sensitive and cost-effective detection of TF occupancy at the single-molecule and single-cell level. Our approach enables the delineation of TF footprints, quantification of occupancy, and examination of chromatin influences on TF binding. Notably, cFOOT-seq, combined with FootTrack analysis, enables de novo prediction of TF binding sites and tracking of TF occupancy dynamics. We demonstrate its application in capturing cell type-specific TFs, analyzing TF dynamics during reprogramming, and revealing TF dependencies on chromatin remodelers. Overall, cFOOT-seq represents a robust approach for investigating the genome-wide dynamics of TF occupancy and elucidating the cis-regulatory architecture underlying gene regulation.
Transcription Factors/genetics*
;
Humans
;
Chromatin/genetics*
;
Animals
;
Binding Sites
;
Mice
;
DNA Footprinting/methods*
5.Development and application of intensive care unit digital intelligence multimodal shift handover system.
Xue BAI ; Lixia CHANG ; Wei FANG ; Zhengang WEI ; Yan CHEN ; Zhenfeng ZHOU ; Min DING ; Hongli LIU ; Jicheng ZHANG
Chinese Critical Care Medicine 2025;37(10):950-955
OBJECTIVE:
To develop a digital intelligent multimodal shift handover system for the intensive care unit (ICU) and evaluate its application effect in ICU shift handovers.
METHODS:
A research and development team was established, consisting of 1 department director, 1 head nurse, 3 information technology engineers, 3 nurses, and 2 doctors. Team members were assigned responsibilities including overall coordination and planning, platform design and maintenance, pre-application training, collection and organization of clinical feedback, and research investigation respectively. A digital intelligent multimodal shift handover system was developed for ICU based on the Shannon-Weaver linear transmission model. This innovative system integrated automated data collection, intelligent dynamic monitoring, multidimensional condition analysis and visual reporting functions. A cloud platform was used to gather data from multi-parameter vital signs monitors, infusion pumps, ventilators and other devices. Artificial intelligence algorithms were employed to standardize and analyze the data, providing personalized recommendations for healthcare professionals. A self-controlled before-after method was adopted. Before the application of the ICU digital intelligent multimodal shift handover system (from December 2023 to March 2024), the traditional verbal bedside handover was used; from June 2024 to March 2025, the ICU digital intelligent multimodal shift handover system was applied for shift handovers. Questionnaires before the application of the shift handover system were collected in April 2024, and those after the application were collected in April 2025. The shift handover time, handover quality (scored by the nursing handover evaluation scale), satisfaction with doctor-nurse communication (scored by the ICU doctor-nurse scale) before and after the application of the handover system were compared, and nurses' satisfaction with the shift handover system (scored by the clinical nursing information system effectiveness evaluation scale) was investigated.
RESULTS:
After the application of the ICU digital intelligent multimodal shift handover system, the shift handover time was significantly shorter than that before the application [minutes: 20 (15, 25) vs. 30 (22, 40)], the handover quality was significantly higher than that before the application [score: 84.0 (78.0, 88.5) vs. 71.0 (55.0, 79.0)], and the satisfaction with doctor-nurse communication was also significantly higher than that before the application (score: 84.58±6.79 vs. 74.50±11.30). All differences were statistically significant (all P < 0.05). In addition, the nurses' system effectiveness evaluation scale score was 102.30±10.56, which indicated that nurses had a very high level of satisfaction with the ICU digital intelligent multimodal shift handover system.
CONCLUSIONS
The application of the ICU digital intelligent multimodal shift handover system can shorten the shift handover time, improve the handover quality, and enhance the satisfaction with doctor-nurse communication. Nurses have a high level of satisfaction with this system.
Intensive Care Units
;
Humans
;
Patient Handoff
;
Artificial Intelligence
;
Algorithms
7.Establishment of amachine learning-based precision recruitment method at the county level
Xiaoyan FU ; Zihan ZHANG ; Fang ZHAO ; Chunlan ZHOU ; Wenbiao LIANG ; Cheng YU ; Yingzhi YAN ; Wei SI ; Weibin TAN ; Hui XUE
Chinese Journal of Blood Transfusion 2025;38(12):1752-1758
Objective: To establish a machine learning-based precision blood donor recruitment model at the county level and assess its generalizability and applicability. Methods: A retrospective study was conducted using blood donation and SMS recruitment data from the Taicang Branch of the Suzhou Blood Center between 2019 and 2024. Multiple machine learning algorithms were employed, including extreme gradient boosting, support vector machine, k-nearest neighbor, logistic regression, decision tree, random forest, and multilayer perceptron. These were combined with techniques such as synthetic minority oversampling, undersampling, and cost-sensitive learning (using MFE and MSFE loss functions). Model parameters were optimized through grid search to identify the best-performing model. Results: In a prospective comparative study against conventional methods, the machine learning models increased the recruitment success rate among high-willingness donors by an average of 129.15%, and the recruitment efficiency per SMS improved by 125.02% compared with the traditional method. Under full-scale SMS sending, the recruitment rate per SMS increased by 42.61%, and SMS sending efficiency improved by 31.77%, significantly enhancing recruitment performance. Conclusion: This study represents the first application of a machine learning-based precision donor recruitment model at the county-level in China. The precise recruitment framework not only improves recruitment efficiency and reduces recruitment costs but also demonstrates strong scalability and generalizability. It provides a scientific and feasible intelligent pathway to ensure the safety and sustainability of the blood supply.
8.Discussion of the methodology and implementation steps for assessing the causality of adverse event
Hong FANG ; Shuo-Peng JIA ; Hai-Xue WANG ; Xiao-Jing PEI ; Min LIU ; An-Qi YU ; Ling-Yun ZHOU ; Fang-Fang SHI ; Shu-Jie LU ; Shu-Hang WANG ; Yue YU ; Dan-Dan CUI ; Yu TANG ; Ning LI ; Ze-Huai WEN
The Chinese Journal of Clinical Pharmacology 2024;40(2):299-304
The assessment of adverse drug events is an important basis for clinical safety evaluation and post-marketing risk control of drugs,and its causality assessment is gaining increasing attention.The existing methods for assessing the causal relationship between drugs and the occurrence of adverse reactions can be broadly classified into three categories:global introspective methods,standardized methods,and probabilistic methods.At present,there is no systematic introduction of the operational details of the various methods in the domestic literature.This paper compares representative causality assessment methods in terms of definition and concept,methodological steps,industry evaluation and advantages and disadvantages,clarifies the basic process of determining the causality of adverse drug reactions,and discusses how to further improve the adverse drug reaction monitoring and evaluation system,with a view to providing a reference for drug development and pharmacovigilance work in China.
9.Clinical trial of Morinda officinalis oligosaccharides in the continuation treatment of adults with mild and moderate depression
Shu-Zhe ZHOU ; Zu-Cheng HAN ; Xiu-Zhen WANG ; Yan-Qing CHEN ; Ya-Ling HU ; Xue-Qin YU ; Bin-Hong WANG ; Guo-Zhen FAN ; Hong SANG ; Ying HAI ; Zhi-Jie JIA ; Zhan-Min WANG ; Yan WEI ; Jian-Guo ZHU ; Xue-Qin SONG ; Zhi-Dong LIU ; Li KUANG ; Hong-Ming WANG ; Feng TIAN ; Yu-Xin LI ; Ling ZHANG ; Hai LIN ; Bin WU ; Chao-Ying WANG ; Chang LIU ; Jia-Fan SUN ; Shao-Xiao YAN ; Jun LIU ; Shou-Fu XIE ; Mao-Sheng FANG ; Wei-Feng MI ; Hong-Yan ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(6):815-819
Objective To observe the efficacy and safety of Morinda officinalis oligosaccharides in the continuation treatment of mild and moderate depression.Methods An open,single-arm,multi-center design was adopted in our study.Adult patients with mild and moderate depression who had received acute treatment of Morinda officinalis oligosaccharides were enrolled and continue to receive Morinda officinalis oligosaccharides capsules for 24 weeks,the dose remained unchanged during continuation treatment.The remission rate,recurrence rate,recurrence time,and the change from baseline to endpoint of Hamilton Depression Scale(HAMD),Hamilton Anxiety Scale(HAMA),Clinical Global Impression-Severity(CGI-S)and Arizona Sexual Experience Scale(ASEX)were evaluated.The incidence of treatment-related adverse events was reported.Results The scores of HAMD-17 at baseline and after treatment were 6.60±1.87 and 5.85±4.18,scores of HAMA were 6.36±3.02 and 4.93±3.09,scores of CGI-S were 1.49±0.56 and 1.29±0.81,scores of ASEX were 15.92±4.72 and 15.57±5.26,with significant difference(P<0.05).After continuation treatment,the remission rate was 54.59%(202 cases/370 cases),and the recurrence rate was 6.49%(24 cases/370 cases),the recurrence time was(64.67±42.47)days.The incidence of treatment-related adverse events was 15.35%(64 cases/417 cases).Conclusion Morinda officinalis oligosaccharides capsules can be effectively used for the continuation treatment of mild and moderate depression,and are well tolerated and safe.
10.Mechanism of ginsenoside Rg1 inhibiting the proliferation and metastasis of tongue squamous cell carcinoma
Xue LI ; Sha-Fei ZHAI ; Xin-Yang MA ; Dan-Yang WANG ; Juan CHAI ; Fang ZHOU ; Jia ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(13):1888-1892
Objective To investigate the inhibitory effect of Ginsenosides Rg1(GS-Rg1)on the proliferation and metastasis of tongue squamous cell carcinoma(TSCC),and its related mechanisms of action.Methods TSCC cells were treated with GS-Rg1 at concentrations of 1.25,2.5,5.0 and 10.0 μmol·L-1 for 48 hours.The proliferation ability of cells at different concentrations was measured by cell counting kit-8(CCK-8)experiment,and the IC5ovalue of GS-Rg1 at CAL-27 for 48 hours was calculated.TSCC cells CAL-27 were divided into control group and GS-Rg1 group.The control group and GS-Rg1 group were treated with 0.9%NaCl and IC50concentration of GS-Rg1 for 48 hours,respectively.The cell cycle distribution of each group was detected by flow cytometry,and the cell metastasis ability of each group was detected by Transwell experiment.Construct TOP/FOP Flash plasmid,transfect control group and GS-Rg1 group,and detect the effect of GS-Rg1 effect on wnt/β-catenin signaling pathway activity in TSCC cell CAL-27 using luciferase assay.Using wnt/β-catenin pathway inhibitor XAV939 treated GS-Rg1 group cells(XAV939+GS-Rg1 group),and wnt/β-catenin pathway activator HLY78 was used to treat GS-Rg1 group cells(HLY78+GS-Rg1 group)and detect changes of wnt/β-catenin signaling pathway activity,the cell proliferation ability,cell cycle distribution,and metastasis ability in XAV939+GS-Rg1 group,HLY78+GS-Rg1 group and GS-Rg1 group.The expression of wnt/β-catenin signaling pathway related proteins β-catenin,and its downstream cell cycle related proteins cellular myelocytomatosis oncogene(cMYC),Cyclin dependent kinase 4(CDK4),andcyclinD1,as well as metastasis related proteins E-cadherin,N-cadherin and matrix metalloproteinase 2(MMP-2)were detected by Western blotting in each group of cells.Results GS-Rg1 significantly inhibited the proliferation ability of TSCC cells CAL-27(P<0.05),and the IC50value of GS-Rg1 on CAL-27 was(5.46±1.58)μmol·L-1.The ratio of GO/G1 phase cells in the control group and GS-Rg1 group were(60.65±2.16)%and(71.20±2.38)%,respectively;the number of cell transmembrane penetration were 87.33±7.51 and 50.67±3.21,respectively;the luciferase activity were 1.00±0.02 and 0.35±0.06,respectively.Compared with the control group,the GS-Rg1 group showed cell cycle arrest in GO/G1 phase,decreased cell metastasis ability,and the activity of wnt/β-catenin signaling pathway decreased(P<0.05,P<0.01).Compared with the GS-Rg1 group,the activity of the wnt/β-catenin signaling pathway was decreased,cell proliferation ability and metastasis ability was decreased(P<0.05),while the number of GO/G1 phase cells was increased(P<0.05),the expression of β-catenin,cMYC,CDK4,cyclinD1,E-cadherin and MMP-2 proteins were decreased(P<0.05),while the expression of N-cadherin protein increased in XAV939+GS-Rg1 group cells.However,the result were opposite in the HLY78+GS-Rg1 group of cells.Conclusion GS-Rg1 downregulates wnt/β-catenin signaling pathway inhibits the proliferation and metastasis ability of TSCC cells.

Result Analysis
Print
Save
E-mail