1.Mechanism of Aerobic Exercise in Delaying Brain Aging in Aging Mice by Regulating Tryptophan Metabolism
De-Man ZHANG ; Chang-Ling WEI ; Yuan-Ting ZHANG ; Yu JIN ; Xiao-Han HUANG ; Min-Yan ZHENG ; Xue LI
Progress in Biochemistry and Biophysics 2025;52(6):1362-1372
ObjectiveTo explore the molecular mechanism of aerobic exercise to improve hippocampal neuronal degeneration by regulating tryptophan metabolic pathway. Methods60 SPF-grade C57BL/6J male mice were divided into a young group (2 months old, n=30) and a senile group (12 months old, n=30), and each group was further divided into a control group (C/A group, n=15) and an exercise group (CE/AE group, n=15). An aerobic exercise program was used for 8 weeks. Learning memory ability was assessed by Y-maze, and anxiety-depression-like behavior was detected by absent field experiment. Hippocampal Trp levels were measured by GC-MS. Nissl staining was used to observe the number and morphology of hippocampal neurons, and electron microscopy was used to detect synaptic ultrastructure. ELISA was used to detect the levels of hippocampal Trp,5-HT, Kyn, KATs, KYNA, KMO, and QUIN; Western blot was used to analyze the activities of TPH2, IDO1, and TDO enzymes. ResultsGroup A mice showed significant decrease in learning and memory ability (P<0.05) and increase in anxiety and depressive behaviors (P<0.05); all of AE group showed significant improvement (P<0.05). Hippocampal Trp levels decreased in group A (P<0.05) and increased in AE group (P<0.05). Nidus vesicles were reduced and synaptic structures were degraded in group A (P<0.05), and both were significantly improved in group AE (P<0.05). The levels of Trp, 5-HT, KATs, and KYNA were decreased (P<0.05) and the levels of Kyn, KMO, and QUIN were increased (P<0.05) in group A. The activity of TPH2 was decreased (P<0.05), and the activities of IDO1 and TDO were increased (P<0.05). The AE group showed the opposite trend. ConclusionThe aging process significantly reduces the learning memory ability and increases the anxiety-depression-like behavior of mice, and leads to the reduction of the number of nidus vesicles and degenerative changes of synaptic structure in the hippocampus, whereas aerobic exercise not only effectively enhances the spatial learning memory ability and alleviates the anxiety-depression-like behavior of aging mice, but also improves the morphology and structure of neurons in hippocampal area, which may be achieved by the mechanism of regulating the tryptophan metabolic pathway.
2.Visual analysis of dynamics and hotspots of biomechanics research on diabetic foot based on WoSCC.
Zhe WANG ; Wei-Dong LIU ; Jun LU ; Hong-Mou ZHAO ; Xue-Fei CAO ; Yun-Long ZHANG ; Xin CHANG ; Liang LIU
China Journal of Orthopaedics and Traumatology 2025;38(9):902-909
OBJECTIVE:
To explore the current research status and hotspots in the field of biomechanics of diabetic foot by bibliometric analysis methods.
METHODS:
Literatures related to biomechanics of diabetic foot published in the Web of Scienc Core Collection (WoSCC) from 1981 to 2024 were searched. CiteSpace software and R language bibliometrics plugin were used to conduct a visual analysis of annual publication volume of the literature, including publication volume of each country and region, the publication situation of authors and institutions, the citation situation of individual literature, and the co-occurrence network of keywords.
RESULTS:
Totally 996 literatures were included, and the number of published papers increased steadily. The United States (261 papers) and China (89 papers) were the top two countries in terms of the number of published papers. The mediating centrality of the United States was 0.94, and that of China was 0.01. Scholars such as Cavanagh and institutions like the Cleveland Clinic were at the core of research in this field. High-frequency keywords include plantar pressure (plantar pressure), diabetic foot (diabetic foot), ulceration (ulcer), etc. The research focuses on plantar pressure, ulcer formation and prevention, etc.
CONCLUSION
Biomechanical research on diabetic foot mainly focuses on the pressure distribution on the sole of the foot, callus formation, mechanical analysis of soft tissues on the sole of the foot, and the study of plantar decompression caused by Achilles tendon elongation. The research trend has gradually shifted from focusing on joint range of motion to gait and the design of braces and assistive devices, and has begun to pay attention to muscle strength, gait imbalance and proprioception abnormalities.
Humans
;
Diabetic Foot/physiopathology*
;
Biomechanical Phenomena
;
Bibliometrics
3.Shexiang Tongxin Dropping Pill Improves Stable Angina Patients with Phlegm-Heat and Blood-Stasis Syndrome: A Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial.
Ying-Qiang ZHAO ; Yong-Fa XING ; Ke-Yong ZOU ; Wei-Dong JIANG ; Ting-Hai DU ; Bo CHEN ; Bao-Ping YANG ; Bai-Ming QU ; Li-Yue WANG ; Gui-Hong GONG ; Yan-Ling SUN ; Li-Qi WANG ; Gao-Feng ZHOU ; Yu-Gang DONG ; Min CHEN ; Xue-Juan ZHANG ; Tian-Lun YANG ; Min-Zhou ZHANG ; Ming-Jun ZHAO ; Yue DENG ; Chang-Jiang XIAO ; Lin WANG ; Bao-He WANG
Chinese journal of integrative medicine 2025;31(8):685-693
OBJECTIVE:
To evaluate the efficacy and safety of Shexiang Tongxin Dropping Pill (STDP) in treating stable angina patients with phlegm-heat and blood-stasis syndrome by exercise duration and metabolic equivalents.
METHODS:
This multicenter, randomized, double-blind, placebo-controlled clinical trial enrolled stable angina patients with phlegm-heat and blood-stasis syndrome from 22 hospitals. They were randomized 1:1 to STDP (35 mg/pill, 6 pills per day) or placebo for 56 days. The primary outcome was the exercise duration and metabolic equivalents (METs) assessed by the standard Bruce exercise treadmill test after 56 days of treatment. The secondary outcomes included the total angina symptom score, Chinese medicine (CM) symptom scores, Seattle Angina Questionnaire (SAQ) scores, changes in ST-T on electrocardiogram and adverse events (AEs).
RESULTS:
This trial enrolled 309 patients, including 155 and 154 in the STDP and placebo groups, respectively. STDP significantly prolonged exercise duration with an increase of 51.0 s, compared to a decrease of 12.0 s with placebo (change rate: -11.1% vs. 3.2%, P<0.01). The increase in METs was significantly greater in the STDP group than in the placebo group (change: -0.4 vs. 0.0, change rate: -5.0% vs. 0.0%, P<0.01). The improvement of total angina symptom scores (25.0% vs. 0.0%), CM symptom scores (38.7% vs. 11.8%), reduction of nitroglycerin consumption (100.0% vs. 11.3%), and all domains of SAQ, were significantly greater with STDP than placebo (all P<0.01). The changes in Q-T intervals at 28 and 56 days from baseline were similar between the two groups (both P>0.05). Twenty-five participants (16.3%) with STDP and 16 (10.5%) with placebo experienced AEs (P=0.131), with no serious AEs observed.
CONCLUSION
STDP could improve exercise tolerance in patients with stable angina and phlegm-heat and blood stasis syndrome, with a favorable safety profile. (Registration No. ChiCTR-IPR-15006020).
Humans
;
Double-Blind Method
;
Drugs, Chinese Herbal/adverse effects*
;
Male
;
Female
;
Middle Aged
;
Angina, Stable/physiopathology*
;
Aged
;
Syndrome
;
Treatment Outcome
;
Placebos
;
Tablets
4.Pseudolaric Acid B Alleviates Non-alcoholic Fatty Liver Disease by Targeting PPARα to Regulate Lipid Metabolism and Promote Mitochondrial Biogenesis.
Shu-Yan LIU ; Xiao-Wei ZHANG ; Gai GAO ; Chang-Xin LIU ; Hui CHEN ; Zhong-Xue FU ; Jiang-Yan XU ; Zhen-Zhen WANG ; Zhen-Qiang ZHANG ; Zhi-Shen XIE
Chinese journal of integrative medicine 2025;31(10):877-888
OBJECTIVE:
To investigate the therapeutic potential of pseudolaric acid B (PAB) on non-alcoholic fatty liver disease (NAFLD) and its underlying molecular mechanism in vitro and in vivo.
METHODS:
Eight-week-old male C57BL/6J mice (n=32) were fed either a normal chow diet (NCD) or a high-fat diet (HFD) for 8 weeks. The HFD mice were divided into 3 groups according to a simple random method, including HFD, PAB low-dose [10 mg/(kg·d), PAB-L], and PAB high-dose [20 mg/(kg·d), PAB-H] groups. After 8 weeks of treatment, glucose metabolism and insulin resistance were assessed by oral glucose tolerance test (OGTT) and insulin tolerance test (ITT). Biochemical assays were used to measure the serum and cellular levels of total cholesterol (TC), triglycerides (TG), aspartate aminotransferase (AST), alanine aminotransferase (ALT), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C). White adipose tissue (WAT), brown adipose tissue (BAT) and liver tissue were subjected to hematoxylin and eosin (H&E) staining or Oil Red O staining to observe the alterations in adipose tissue and liver injury. PharmMapper and DisGeNet were used to predict the NAFLD-related PAB targets. Peroxisome proliferator-activated receptor alpha (PPARα) pathway involvement was suggested by Kyoto Encyclopedia of Genes and Genomes (KEGG) and search tool Retrieval of Interacting Genes (STRING) analyses. Luciferase reporter assay, cellular thermal shift assay (CETSA), and drug affinity responsive target stability assay (DARTS) were conducted to confirm direct binding of PAB with PPARα. Molecular dynamics simulations were applied to further validate target engagement. RT-qPCR and Western blot were performed to assess the downstream genes and proteins expression, and validated by PPARα inhibitor MK886.
RESULTS:
PAB significantly reduced serum TC, TG, LDL-C, AST, and ALT levels, and increased HDL-C level in HFD mice (P<0.01). Target prediction analysis indicated a significant correlation between PAB and PPARα pathway. PAB direct target binding with PPARα was confirmed through luciferase reporter assay, CETSA, and DARTS (P<0.05 or P<0.01). The target engagement between PAB and PPARα protein was further confirmed by molecular dynamics simulations and the top 3 amino acid residues, LEU321, MET355, and PHE273 showed the most significant changes in mutational energy. Subsequently, PAB upregulated the genes expressions involved in lipid metabolism and mitochondrial biogenesis downstream of PPARα (P<0.05 or P<0.01). Significantly, the PPARα inhibitor MK886 effectively reversed the lipid-lowering and PPARα activation properties of PAB (P<0.05 or P<0.01).
CONCLUSION
PAB mitigates lipid accumulation, ameliorates liver damage, and improves mitochondrial biogenesis by binding with PPARα, thus presenting a potential candidate for pharmaceutical development in the treatment of NAFLD.
Animals
;
PPAR alpha/metabolism*
;
Non-alcoholic Fatty Liver Disease/pathology*
;
Male
;
Mice, Inbred C57BL
;
Lipid Metabolism/drug effects*
;
Diterpenes/therapeutic use*
;
Organelle Biogenesis
;
Diet, High-Fat
;
Humans
;
Mice
;
Liver/metabolism*
;
Insulin Resistance
;
Mitochondria/metabolism*
;
Molecular Docking Simulation
5.Artificial intelligence in traditional Chinese medicine: from systems biological mechanism discovery, real-world clinical evidence inference to personalized clinical decision support.
Dengying YAN ; Qiguang ZHENG ; Kai CHANG ; Rui HUA ; Yiming LIU ; Jingyan XUE ; Zixin SHU ; Yunhui HU ; Pengcheng YANG ; Yu WEI ; Jidong LANG ; Haibin YU ; Xiaodong LI ; Runshun ZHANG ; Wenjia WANG ; Baoyan LIU ; Xuezhong ZHOU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(11):1310-1328
Traditional Chinese medicine (TCM) represents a paradigmatic approach to personalized medicine, developed through the systematic accumulation and refinement of clinical empirical data over more than 2000 years, and now encompasses large-scale electronic medical records (EMR) and experimental molecular data. Artificial intelligence (AI) has demonstrated its utility in medicine through the development of various expert systems (e.g., MYCIN) since the 1970s. With the emergence of deep learning and large language models (LLMs), AI's potential in medicine shows considerable promise. Consequently, the integration of AI and TCM from both clinical and scientific perspectives presents a fundamental and promising research direction. This survey provides an insightful overview of TCM AI research, summarizing related research tasks from three perspectives: systems-level biological mechanism elucidation, real-world clinical evidence inference, and personalized clinical decision support. The review highlights representative AI methodologies alongside their applications in both TCM scientific inquiry and clinical practice. To critically assess the current state of the field, this work identifies major challenges and opportunities that constrain the development of robust research capabilities-particularly in the mechanistic understanding of TCM syndromes and herbal formulations, novel drug discovery, and the delivery of high-quality, patient-centered clinical care. The findings underscore that future advancements in AI-driven TCM research will rely on the development of high-quality, large-scale data repositories; the construction of comprehensive and domain-specific knowledge graphs (KGs); deeper insights into the biological mechanisms underpinning clinical efficacy; rigorous causal inference frameworks; and intelligent, personalized decision support systems.
Medicine, Chinese Traditional/methods*
;
Artificial Intelligence
;
Humans
;
Precision Medicine
;
Decision Support Systems, Clinical
6.Development and application of intensive care unit digital intelligence multimodal shift handover system.
Xue BAI ; Lixia CHANG ; Wei FANG ; Zhengang WEI ; Yan CHEN ; Zhenfeng ZHOU ; Min DING ; Hongli LIU ; Jicheng ZHANG
Chinese Critical Care Medicine 2025;37(10):950-955
OBJECTIVE:
To develop a digital intelligent multimodal shift handover system for the intensive care unit (ICU) and evaluate its application effect in ICU shift handovers.
METHODS:
A research and development team was established, consisting of 1 department director, 1 head nurse, 3 information technology engineers, 3 nurses, and 2 doctors. Team members were assigned responsibilities including overall coordination and planning, platform design and maintenance, pre-application training, collection and organization of clinical feedback, and research investigation respectively. A digital intelligent multimodal shift handover system was developed for ICU based on the Shannon-Weaver linear transmission model. This innovative system integrated automated data collection, intelligent dynamic monitoring, multidimensional condition analysis and visual reporting functions. A cloud platform was used to gather data from multi-parameter vital signs monitors, infusion pumps, ventilators and other devices. Artificial intelligence algorithms were employed to standardize and analyze the data, providing personalized recommendations for healthcare professionals. A self-controlled before-after method was adopted. Before the application of the ICU digital intelligent multimodal shift handover system (from December 2023 to March 2024), the traditional verbal bedside handover was used; from June 2024 to March 2025, the ICU digital intelligent multimodal shift handover system was applied for shift handovers. Questionnaires before the application of the shift handover system were collected in April 2024, and those after the application were collected in April 2025. The shift handover time, handover quality (scored by the nursing handover evaluation scale), satisfaction with doctor-nurse communication (scored by the ICU doctor-nurse scale) before and after the application of the handover system were compared, and nurses' satisfaction with the shift handover system (scored by the clinical nursing information system effectiveness evaluation scale) was investigated.
RESULTS:
After the application of the ICU digital intelligent multimodal shift handover system, the shift handover time was significantly shorter than that before the application [minutes: 20 (15, 25) vs. 30 (22, 40)], the handover quality was significantly higher than that before the application [score: 84.0 (78.0, 88.5) vs. 71.0 (55.0, 79.0)], and the satisfaction with doctor-nurse communication was also significantly higher than that before the application (score: 84.58±6.79 vs. 74.50±11.30). All differences were statistically significant (all P < 0.05). In addition, the nurses' system effectiveness evaluation scale score was 102.30±10.56, which indicated that nurses had a very high level of satisfaction with the ICU digital intelligent multimodal shift handover system.
CONCLUSIONS
The application of the ICU digital intelligent multimodal shift handover system can shorten the shift handover time, improve the handover quality, and enhance the satisfaction with doctor-nurse communication. Nurses have a high level of satisfaction with this system.
Intensive Care Units
;
Humans
;
Patient Handoff
;
Artificial Intelligence
;
Algorithms
7.Comprehensive Analysis of Oncogenic, Prognostic, and Immunological Roles of FANCD2 in Hepatocellular Carcinoma: A Potential Predictor for Survival and Immunotherapy.
Meng Jiao XU ; Wen DENG ; Ting Ting JIANG ; Shi Yu WANG ; Ru Yu LIU ; Min CHANG ; Shu Ling WU ; Ge SHEN ; Xiao Xue CHEN ; Yuan Jiao GAO ; Hongxiao HAO ; Lei Ping HU ; Lu ZHANG ; Yao LU ; Wei YI ; Yao XIE ; Ming Hui LI
Biomedical and Environmental Sciences 2025;38(3):313-327
OBJECTIVE:
Hepatocellular carcinoma (HCC) is sensitive to ferroptosis, a new form of programmed cell death that occurs in most tumor types. However, the mechanism through which ferroptosis modulates HCC remains unclear. This study aimed to investigate the oncogenic role and prognostic value of FANCD2 and provide novel insights into the prognostic assessment and prediction of immunotherapy.
METHODS:
Using clinicopathological parameters and bioinformatic techniques, we comprehensively examined the expression of FANCD2 macroscopically and microcosmically. We conducted univariate and multivariate Cox regression analyses to identify the prognostic value of FANCD2 in HCC and elucidated the detailed molecular mechanisms underlying the involvement of FANCD2 in oncogenesis by promoting iron-related death.
RESULTS:
FANCD2 was significantly upregulated in digestive system cancers with abundant immune infiltration. As an independent risk factor for HCC, a high FANCD2 expression level was associated with poor clinical outcomes and response to immune checkpoint blockade. Gene set enrichment analysis revealed that FANCD2 was mainly involved in the cell cycle and CYP450 metabolism.
CONCLUSION
To the best of our knowledge, this is the first study to comprehensively elucidate the oncogenic role of FANCD2. FANCD2 has a tumor-promoting aspect in the digestive system and acts as an independent risk factor in HCC; hence, it has recognized value for predicting tumor aggressiveness and prognosis and may be a potential biomarker for poor responsiveness to immunotherapy.
Humans
;
Carcinoma, Hepatocellular/diagnosis*
;
Liver Neoplasms/diagnosis*
;
Immunotherapy
;
Fanconi Anemia Complementation Group D2 Protein/metabolism*
;
Prognosis
;
Male
;
Female
;
Middle Aged
;
Biomarkers, Tumor/metabolism*
8.Clinical features and genetic analysis of three children with β -ketothiolase deficiency
Xue WU ; Yuan LI ; Qiong CHEN ; Shengnan WU ; Chang SU ; Dongxiao LI ; Yongxing CHEN ; Haiyan WEI
Chinese Journal of Medical Genetics 2024;41(3):289-293
Objective:To explore the clinical features and genetic variants in three children suspected for β-ketothiolase deficiency (BKTD).Methods:Clinical manifestations, laboratory examination and genetic testing of three children suspected for BKTD at Henan Children′s Hospital between January 2018 and October 2022 were collected, and their clinical and genetic variants were retrospectively analyzed.Results:The children were all males with a age from 7 to 11 months. Their clinical manifestations have included poor spirit, shortness of breath, vomiting, convulsions after traumatic stress and/or infection. All of them had severe metabolic acidosis, elevated ketone bodies in blood and urine, hypoglycemia, with increased isoprenyl-carnitine and 3-hydroxyisovalyl-carnitine in the blood, and 2-methyl-3-hydroxybutyrate and methylprotaroyl glycine in the urine. All of them were found to harbor compound heterozygous variants of the ACAT1 gene, including c. 1183G>T and a large fragment deletion (11q22.3-11q23.1) in child 1, c. 121-3C>G and c. 826+ 5_826+ 9delGTGTT in child 2, and c. 928G>C and c. 1142T>C in child 3. The variants harbored by children 2 and 3 were known to be pathogenic or likely pathogenic. The heterozygous c. 1183G>T variant in child 1 was unreported previously and rated as a variant of unknown significance (PM2_Supporting+ PP3+ PP4) based on guidelines from the American College of Medical Genetics and Genomics. The large segment deletion in 11q22.3-11q23.1 has not been included in the DGV Database and was rated as a pathogenic copy number variation. Conclusion:The variants of the ACAT1 gene probably underlay the pathogenesis of BKTD in these three children.
9.On-line Measurement of Styrene Secondary Organic Aerosol Using Synchrotron Radiation Vacuum Ultraviolet Photoionization Aerosol Mass Spectrometer
Ming-Qiang HUANG ; Xiao-Bin SHAN ; Liu-Si SHENG ; Zhen-Ya WANG ; Chang-Jin HU ; Xue-Jun GU ; Wei-Jun ZHANG
Chinese Journal of Analytical Chemistry 2024;52(8):1200-1210
Secondary organic aerosol(SOA)produced by photooxidation of styrene and other aromatic compounds is a major part of fine particles in urban atmosphere.In this study,the measurement of component and content of SOA formed from photooxidation of styrene in smog chamber using synchronous radiation vacuum-ultraviolet photoionization aerosol mass spectrometer(VUV-PIAMS)was conducted.Photoionization mass spectra of styrene SOA was detected by synchrotron radiation photon with 10.5 eV,and the proportion of main components was quantified based on the peak area of each ion peak.The photoionization efficiency curve of ion peak was obtained under synchrotron radiation photons in the range from 7.5 to 11.5 eV,and then the ionization potential was acquired for qualitative analysis of the component structure.The results showed that the photoionization mass spectra of styrene SOA mainly contained ion peaks at m/z 106,108,120 and 122,and the ionization potentials of each peak were(9.41±0.03)eV,(8.93±0.03)eV,(9.24±0.03)eV and(9.25±0.03)eV,respectively.Combined with quantum chemistry calculation and off-line measurement verification of infrared absorption spectra and electrospray ionization mass spectra,it was determined that benzaldehyde,benzyl alcohol,4-vinylphenol and benzoic acid were main components of styrene SOA,accounting for 32.5%,17.5%,25%and 15%of the measured components,respectively,and the generated quantity ratio was 13∶7∶10∶6.VUV-PIAMS could overcome the disadvantages of off-line method,and could on-line detect component and content of SOA,proving a useful tool to measure the chemical components and reveal the formation process of SOA particles.
10.Preparation of soluble microneedle patch with fusion protein nanoparticles secreted by Mycobacterium tuberculosis and application of tuberculosis skin test
Fan CHEN ; Rong-sheng ZHU ; Jing ZHOU ; Yue HU ; Yun XUE ; Jian-hua KANG ; Wei WANG
Acta Pharmaceutica Sinica 2024;59(6):1804-1811
Rapid epidemiological screening for tuberculosis (TB) usually uses tuberculin pure protein derivative (PPD) skin test, which has limitations such as low specificity and high side effects. ESAT-6 and CFP-10 are secreted proteins of

Result Analysis
Print
Save
E-mail