1.Mechanism of Aerobic Exercise in Delaying Brain Aging in Aging Mice by Regulating Tryptophan Metabolism
De-Man ZHANG ; Chang-Ling WEI ; Yuan-Ting ZHANG ; Yu JIN ; Xiao-Han HUANG ; Min-Yan ZHENG ; Xue LI
Progress in Biochemistry and Biophysics 2025;52(6):1362-1372
ObjectiveTo explore the molecular mechanism of aerobic exercise to improve hippocampal neuronal degeneration by regulating tryptophan metabolic pathway. Methods60 SPF-grade C57BL/6J male mice were divided into a young group (2 months old, n=30) and a senile group (12 months old, n=30), and each group was further divided into a control group (C/A group, n=15) and an exercise group (CE/AE group, n=15). An aerobic exercise program was used for 8 weeks. Learning memory ability was assessed by Y-maze, and anxiety-depression-like behavior was detected by absent field experiment. Hippocampal Trp levels were measured by GC-MS. Nissl staining was used to observe the number and morphology of hippocampal neurons, and electron microscopy was used to detect synaptic ultrastructure. ELISA was used to detect the levels of hippocampal Trp,5-HT, Kyn, KATs, KYNA, KMO, and QUIN; Western blot was used to analyze the activities of TPH2, IDO1, and TDO enzymes. ResultsGroup A mice showed significant decrease in learning and memory ability (P<0.05) and increase in anxiety and depressive behaviors (P<0.05); all of AE group showed significant improvement (P<0.05). Hippocampal Trp levels decreased in group A (P<0.05) and increased in AE group (P<0.05). Nidus vesicles were reduced and synaptic structures were degraded in group A (P<0.05), and both were significantly improved in group AE (P<0.05). The levels of Trp, 5-HT, KATs, and KYNA were decreased (P<0.05) and the levels of Kyn, KMO, and QUIN were increased (P<0.05) in group A. The activity of TPH2 was decreased (P<0.05), and the activities of IDO1 and TDO were increased (P<0.05). The AE group showed the opposite trend. ConclusionThe aging process significantly reduces the learning memory ability and increases the anxiety-depression-like behavior of mice, and leads to the reduction of the number of nidus vesicles and degenerative changes of synaptic structure in the hippocampus, whereas aerobic exercise not only effectively enhances the spatial learning memory ability and alleviates the anxiety-depression-like behavior of aging mice, but also improves the morphology and structure of neurons in hippocampal area, which may be achieved by the mechanism of regulating the tryptophan metabolic pathway.
2.Buzhong Yiqi Decoction alleviates immune injury of autoimmune thyroiditis in NOD.H-2~(h4)mice via c GAS-STING signaling pathway.
Yi-Ran CHEN ; Lan-Ting WANG ; Qing-Yang LIU ; Zhao-Han ZHAI ; Shou-Xin JU ; Xue-Ying CHEN ; Zi-Yu LIU ; Xiao YANG ; Tian-Shu GAO ; Zhi-Min WANG
China Journal of Chinese Materia Medica 2025;50(7):1872-1880
This study aims to explore the effects of Buzhong Yiqi Decoction(BYD) on the cyclic guanosine monophosphate-adenosine monophosphate synthase(cGAS)-stimulator of interferon genes(STING) signaling pathway in the mouse model of autoimmune thyroiditis(AIT) and the mechanism of BYD in alleviating the immune injury. Forty-eight NOD.H-2~(h4) mice were assigned into normal, model, low-, medium-, and high-dose BYD, and selenium yeast tablets groups(n=8). Mice of 8 weeks old were treated with 0.05% sodium iodide solution for 8 weeks for the modeling of AIT and then administrated with corresponding drugs by gavage for 8 weeks before sampling. High performance liquid chromatography was employed to measure the astragaloside Ⅳ content in BYD. Hematoxylin-eosin staining was employed to observe the pathological changes in the mouse thyroid tissue. Enzyme-linked immunosorbent assay was employed to measure the serum levels of thyroid peroxidase antibody(TPO-Ab), thyroglobulin antibody(TgAb), and interferon-γ(IFN-γ). Flow cytometry was employed to detect the distribution of T cell subsets in the spleen. The immunohistochemical method was used to detect the expression of cGAS, STING, TANK-binding kinase 1(TBK1), and interferon regulatory factor 3(IRF3). Real-time PCR and Western blot were employed to determine the mRNA and protein levels, respectively, of markers related to the cGAS-STING signaling pathway in the thyroid tissue. The results showed that the content of astragaloside Ⅳ in BYD was(7.06±0.08) mg·mL~(-1). Compared with the normal group, the model group showed disrupted structures of thyroid follicular epithelial cells, massive infiltration of lymphocytes, and elevated levels of TgAb and TPO-Ab. Compared with the model group, the four treatment groups showed intact epithelial cells, reduced lymphocyte infiltration, and lowered levels of TgAb and TPO-Ab. Compared with the normal group, the model group showed increases in the proportions of Th1 and Th17 cells, a decrease in the proportion of Th2 cells, and an increase in the IFN-γ level. Compared with the model group, the four treatment groups presented decreased proportions of Th1 and Th17 cells and lowered levels of IFN-γ, and the medium-dose BYD group showed an increase in the proportion of Th2 cells. Compared with the normal group, the modeling up-regulated the mRNA levels of cGAS, STING, TBK1, and IRF3 and the protein levels of cGAS, p-STING, p-TBK1, and p-IRF3. Compared with the model group, the four treatment groups showed reduced levels of cGAS, STING, TBK1, and IRF3-positive products, down-regulated mRNA levels of cGAS, STING, and TBK1, and down-regulated protein levels of cGAS and p-STING. The high-dose BYD group showed down-regulations in the mRNA level of IRF3 and the protein levels of p-TBK1 and p-IRF3. The above results indicate that BYD can repair the imbalance of T cell subsets, alleviate immune injury, and reduce thyroid lymphocyte infiltration in AIT mice by inhibiting the cGAS-STING signaling pathway.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Signal Transduction/drug effects*
;
Thyroiditis, Autoimmune/metabolism*
;
Mice
;
Membrane Proteins/metabolism*
;
Mice, Inbred NOD
;
Humans
;
Female
;
Nucleotidyltransferases/metabolism*
;
Male
;
Disease Models, Animal
3.Inhibitory Effect of Simvastatin Combined with Doxorubicin on Biological Functions of Diffuse Large B-Cell Lymphoma Cells and Its Mechanism.
Yao WANG ; Min-An ZHANG ; Huan ZHOU ; Qing-Feng XUE ; Wen-Yu SHI ; Ya-Ping ZHANG
Journal of Experimental Hematology 2025;33(1):82-92
OBJECTIVE:
To explore the effect of simvastatin monotherapy or in combination with doxorubicin on diffuse large B-cell lymphoma (DLBCL) cells and its possible molecular mechanisms.
METHODS:
The differences in the expression levels of genes and proteins related to the mevalonate (MVA) pathway between DLBCL tissues and reactive lymph node hyperplasia tissues were compared via database analysis, as well as their effects on the prognosis. CCK-8 assay was used to detect the effect of simvastatin and doxorubicin on the viability of different subtypes of DLBCL cells, EdU was used to detect cell proliferation, flow cytometry was used to detect apoptosis, and Western blot was used to detect related protein and signaling pathway proteins.
RESULTS:
The expression levels of MVA pathway-related genes were increased in tumor tissues of DLBCL patients through the TCGA database, and the median overall survival time of DLBCL patients in HMGCR high expression group was shorter (all P < 0.05). Meanwhile, according to The Human Protein Atlas database, HMGCR protein was significantly high expressed in DLBCL tumor tissue compared with normal tissue. The viability of DLBCL cell lines treated with simvastatin or doxorubicin monotherapy was decreased in time- and concentration-dependent manner, and could be further inhibited by simvastatin combined with doxorubicin especially in GCB subtype cell lines. Both simvastatin and doxorubicin could inhibit the proliferation of DLBCL cell lines, and their combination further suppressed dramatically. Both the two drugs promoted apoptosis in DLBCL cell lines, and the apoptosis was further increased after their combination. Compared with monotherapy, the expression of HMGCR protein and apoptosis-related protein Bcl-2 was further decreased but cleaved-caspase3 and Bax increased after combination therapy. Meanwhile, the expression level of phosphorylated proteins in PI3K-Akt pro-survival signaling pathway were decreased especially in GCB subtype cell lines.
CONCLUSION
HMGCR, the protein associated with cholesterol synthesis pathway, is highly expressed in DLBCL tumor tissues and indicates poor prognosis. Simvastatin, a lipid-lowering drug, combined with doxorubicin can further affect the survival of DLBCL tumor cells at the cellular level.
Humans
;
Lymphoma, Large B-Cell, Diffuse/metabolism*
;
Doxorubicin/pharmacology*
;
Simvastatin/pharmacology*
;
Apoptosis/drug effects*
;
Cell Proliferation/drug effects*
;
Signal Transduction
;
Cell Line, Tumor
;
Hydroxymethylglutaryl CoA Reductases/metabolism*
4.A Clinical Study of Children with SIL-TAL1-Positive Acute T-Lymphoblastic Leukemia.
Yu-Juan XUE ; Yu WANG ; Le-Ping ZHANG ; Ai-Dong LU ; Yue-Ping JIA ; Hui-Min ZENG
Journal of Experimental Hematology 2025;33(5):1262-1268
OBJECTIVE:
To explore the clinical characteristics and prognosis of children with SIL-TAL1-positive T-cell acute lymphoblastic leukemia ( SIL-TAL1+ T-ALL).
METHODS:
The clinical data of 110 children with newly diagnosed T-ALL admitted to the pediatric department of our hospital from January 2010 to December 2018 were reviewed to compare the clinical characteristics, treatment response and prognosis between SIL-TAL1+ group and SIL-TAL1-group.
RESULTS:
Among the 110 children with T-ALL, 25 cases (22.7%) were in the SIL-TAL1+ group and 85 cases (77.3%) in the SIL-TAL1- group. The white blood cell (WBC) count in the SIL-TAL1+ group was significantly higher than that in the SIL-TAL1- group (P < 0.05), while the other clinical characteristics and treatment response were not significantly different between the two groups. The 5-year overall survival (OS) rates of SIL-TAL1+ group and SIL-TAL1- group were 80.0% and 75.5%, and 5-year disease-free survival (DFS) rates were 76.0% and 72.9%, respectively. There were no significant differences in OS rate and DFS rate between the two groups ( P >0.05). In children aged < 10 years, the 5-year OS rate of SIL-TAL1+ group and SIL-TAL1- group was 100% and 75.1%, respectively, and the difference between the two groups was statistically significant (P < 0.05).
CONCLUSION
Although the WBC level is significantly higher in children with SIL-TAL1+ T-ALL than that in those with SIL-TAL1- T-ALL, the treatment efficacy is similar between the two groups. In children aged < 10 years, the longterm survival rate is superior in the SIL-TAL1+ group.
Humans
;
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis*
;
Prognosis
;
Child
;
Male
;
Female
;
Survival Rate
;
T-Cell Acute Lymphocytic Leukemia Protein 1
;
Child, Preschool
;
Oncogene Proteins, Fusion
;
Leukocyte Count
5.Advances in Lung Cancer Treatment: Integrating Immunotherapy and Chinese Herbal Medicines to Enhance Immune Response.
Yu-Xin XU ; Lin CHEN ; Wen-da CHEN ; Jia-Xue FAN ; Ying-Ying REN ; Meng-Jiao ZHANG ; Yi-Min CHEN ; Pu WU ; Tian XIE ; Jian-Liang ZHOU
Chinese journal of integrative medicine 2025;31(9):856-864
6.Shexiang Tongxin Dropping Pill Improves Stable Angina Patients with Phlegm-Heat and Blood-Stasis Syndrome: A Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial.
Ying-Qiang ZHAO ; Yong-Fa XING ; Ke-Yong ZOU ; Wei-Dong JIANG ; Ting-Hai DU ; Bo CHEN ; Bao-Ping YANG ; Bai-Ming QU ; Li-Yue WANG ; Gui-Hong GONG ; Yan-Ling SUN ; Li-Qi WANG ; Gao-Feng ZHOU ; Yu-Gang DONG ; Min CHEN ; Xue-Juan ZHANG ; Tian-Lun YANG ; Min-Zhou ZHANG ; Ming-Jun ZHAO ; Yue DENG ; Chang-Jiang XIAO ; Lin WANG ; Bao-He WANG
Chinese journal of integrative medicine 2025;31(8):685-693
OBJECTIVE:
To evaluate the efficacy and safety of Shexiang Tongxin Dropping Pill (STDP) in treating stable angina patients with phlegm-heat and blood-stasis syndrome by exercise duration and metabolic equivalents.
METHODS:
This multicenter, randomized, double-blind, placebo-controlled clinical trial enrolled stable angina patients with phlegm-heat and blood-stasis syndrome from 22 hospitals. They were randomized 1:1 to STDP (35 mg/pill, 6 pills per day) or placebo for 56 days. The primary outcome was the exercise duration and metabolic equivalents (METs) assessed by the standard Bruce exercise treadmill test after 56 days of treatment. The secondary outcomes included the total angina symptom score, Chinese medicine (CM) symptom scores, Seattle Angina Questionnaire (SAQ) scores, changes in ST-T on electrocardiogram and adverse events (AEs).
RESULTS:
This trial enrolled 309 patients, including 155 and 154 in the STDP and placebo groups, respectively. STDP significantly prolonged exercise duration with an increase of 51.0 s, compared to a decrease of 12.0 s with placebo (change rate: -11.1% vs. 3.2%, P<0.01). The increase in METs was significantly greater in the STDP group than in the placebo group (change: -0.4 vs. 0.0, change rate: -5.0% vs. 0.0%, P<0.01). The improvement of total angina symptom scores (25.0% vs. 0.0%), CM symptom scores (38.7% vs. 11.8%), reduction of nitroglycerin consumption (100.0% vs. 11.3%), and all domains of SAQ, were significantly greater with STDP than placebo (all P<0.01). The changes in Q-T intervals at 28 and 56 days from baseline were similar between the two groups (both P>0.05). Twenty-five participants (16.3%) with STDP and 16 (10.5%) with placebo experienced AEs (P=0.131), with no serious AEs observed.
CONCLUSION
STDP could improve exercise tolerance in patients with stable angina and phlegm-heat and blood stasis syndrome, with a favorable safety profile. (Registration No. ChiCTR-IPR-15006020).
Humans
;
Double-Blind Method
;
Drugs, Chinese Herbal/adverse effects*
;
Male
;
Female
;
Middle Aged
;
Angina, Stable/physiopathology*
;
Aged
;
Syndrome
;
Treatment Outcome
;
Placebos
;
Tablets
7.Analysis and clinical characteristics of SLC26A4 gene mutations in 72 cases of large vestibular aqueduct syndrome.
Yuqing LIU ; Wenyu XIONG ; Yu LU ; Lisong LIANG ; Kejie YANG ; Li LAN ; Wei HAN ; Qing YE ; Min WANG ; Yuan ZHANG ; Fangying TAO ; Zuwei CAO ; Wei HUANG ; Xue YANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(7):603-609
Objective:To explore the genetic and clinical characteristics of Guizhou patients with enlarged vestibular aqueduct(EVA) syndrome through combined SLC26A4 variant analysis and clinical phenotype analysis. Methods:Seventy-two EVA patients underwent comprehensive genetic testing using a multiplex PCR-based deafness gene panel and next-generation sequencing(NGS). The audiological and temporal bone imaging characteristics were compared across mutation subtypes. Results:A total of 27 pathogenic loci of SLC26A4 were detected in 72 patients, including c.919-2A>G in 79.2%(57/72). A novel deletion(c.1703_1707+6del) was discovered. Among 65 cases, truncated mutations were 89.2%(58/65), 52.3%(34/65), 28(43.1%) and 7(10.8%). No significant differences were observed in the midpoint diameter of the vestibular aqueduct and the incidence of incomplete partitioning typeⅡ(IP-Ⅱ) of the cochlea among the three groups of patients. Moreover, there was no difference in the midpoint diameter of different vestibular pipes or the combination with IP-Ⅱ. Conclusion:The most common mutation site of SLC26A4 in EVA patients in Guizhou is c.919-2A>G, though genotype-phenotype correlations remain elusive. The detection of 27 mutation sites and the discovery of new mutation sites suggested the precise diagnostic significance of NGS technology in EVA patients in Guizhou.
Humans
;
Sulfate Transporters
;
Vestibular Aqueduct/abnormalities*
;
Mutation
;
Membrane Transport Proteins/genetics*
;
Hearing Loss, Sensorineural/genetics*
;
Male
;
Female
;
Child
;
Adolescent
;
Child, Preschool
;
Adult
;
Young Adult
;
Phenotype
;
High-Throughput Nucleotide Sequencing
8.High expression of apolipoprotein C1 promotes proliferation and inhibits apoptosis of papillary thyroid carcinoma cells by activating the JAK2/STAT3 signaling pathway.
Yu BIN ; Ziwen LI ; Suwei ZUO ; Sinuo SUN ; Min LI ; Jiayin SONG ; Xu LIN ; Gang XUE ; Jingfang WU
Journal of Southern Medical University 2025;45(2):359-370
OBJECTIVES:
To investigate the expression of apolipoprotein C1 (APOC1) in papillary thyroid carcinoma (PTC) and its effects on proliferation and apoptosis of PTC cells.
METHODS:
The expression level of APOC1 in PTC and its impact on prognosis were analyzed using GEPIA 2 and Kaplan-Meier databases. Immunohistochemistry (IHC) and Western blotting were used to detect the expression of APOC1 in PTC and adjacent tissues and in 3 PTC cell lines and normal thyroid Nthyori 3-1 cells. In TPC-1 and BCPAP cells, the effect of Lipofectamine 2000-mediated transfection with APOC1 siRNA or an APOC1-overexpressing plasmid on cell growth and colony formation ability were examined by observing the growth curves and using colony-forming assay. The changes in cell cycle and apoptosis of the transfected cells were analyzed with flow cytometry. RT-qPCR and Western blotting were used to detect the changes in expressions of P21, P27, CDK4, cyclin D1, Bcl-2, Bax, caspase-3 and caspase-9 and the key proteins in the JAK2/STAT3 signaling pathway.
RESULTS:
APOC1 expression was significantly higher in PTC tissues and the 3 PTC cell lines than in the adjacent tissues and Nthyori 3-1 cells, respectively. In TPC-1 and BCPAP cells, APOC1 knockdown obviously reduced cell proliferative activity, increased the percentage of G0/G1 phase cells, lowered the percentages of S and G2 phase cells, promoted cell apoptosis, and downregulated mRNA and protein expression levels of CDK4, cyclin D1 and Bcl-2 and the protein levels of p-JAK2 and p-STAT3. APOC1 overexpression in the cells produced the opposite effects on cell proliferation, apoptosis, cell cycle and the mRNA and protein expressions. The application of AG490, a JAK2 inhibitor, strongly attenuated APOC1 overexpression-induced activation of the JAK2/STAT3 signaling pathway in BCPAP cells.
CONCLUSIONS
APOC1 overexpression promotes proliferation and inhibits apoptosis of PTC cells possibly by activating the JAK2/STAT3 signaling pathway and accelerating cell cycle progression.
Humans
;
Apoptosis
;
Cell Proliferation
;
STAT3 Transcription Factor/metabolism*
;
Signal Transduction
;
Janus Kinase 2/metabolism*
;
Thyroid Neoplasms/pathology*
;
Thyroid Cancer, Papillary
;
Cell Line, Tumor
;
Carcinoma, Papillary
9.Genome-wide investigation of transcription factor footprints and dynamics using cFOOT-seq.
Heng WANG ; Ang WU ; Meng-Chen YANG ; Di ZHOU ; Xiyang CHEN ; Zhifei SHI ; Yiqun ZHANG ; Yu-Xin LIU ; Kai CHEN ; Xiaosong WANG ; Xiao-Fang CHENG ; Baodan HE ; Yutao FU ; Lan KANG ; Yujun HOU ; Kun CHEN ; Shan BIAN ; Juan TANG ; Jianhuang XUE ; Chenfei WANG ; Xiaoyu LIU ; Jiejun SHI ; Shaorong GAO ; Jia-Min ZHANG
Protein & Cell 2025;16(11):932-952
Gene regulation relies on the precise binding of transcription factors (TFs) at regulatory elements, but simultaneously detecting hundreds of TFs on chromatin is challenging. We developed cFOOT-seq, a cytosine deaminase-based TF footprinting assay, for high-resolution, quantitative genome-wide assessment of TF binding in both open and closed chromatin regions, even with small cell numbers. By utilizing the dsDNA deaminase SsdAtox, cFOOT-seq converts accessible cytosines to uracil while preserving genomic integrity, making it compatible with techniques like ATAC-seq for sensitive and cost-effective detection of TF occupancy at the single-molecule and single-cell level. Our approach enables the delineation of TF footprints, quantification of occupancy, and examination of chromatin influences on TF binding. Notably, cFOOT-seq, combined with FootTrack analysis, enables de novo prediction of TF binding sites and tracking of TF occupancy dynamics. We demonstrate its application in capturing cell type-specific TFs, analyzing TF dynamics during reprogramming, and revealing TF dependencies on chromatin remodelers. Overall, cFOOT-seq represents a robust approach for investigating the genome-wide dynamics of TF occupancy and elucidating the cis-regulatory architecture underlying gene regulation.
Transcription Factors/genetics*
;
Humans
;
Chromatin/genetics*
;
Animals
;
Binding Sites
;
Mice
;
DNA Footprinting/methods*
10.Antidepressant mechanism of Xiaoyaosan: A perspective from energy metabolism of the brain and intestine.
Meng-Ting XIAO ; Sen-Yan WANG ; Xiao-Ling WU ; Zi-Yu ZHAO ; Hui-Min WANG ; Hui-Min LIU ; Xue-Mei QIN ; Xiao-Jie LIU
Journal of Integrative Medicine 2025;23(6):706-720
OBJECTIVE:
This study investigated the antidepression mechanisms of Xiaoyaosan (XYS), a classic Chinese prescription, from the perspective of energy metabolism in the brain and intestinal tissues.
METHODS:
Chronic unpredictable mild stress model-a classic depression rat model-was established. Effects of XYS on behaviors and gastrointestinal motility of depressed rats were investigated. Effects of XYS on energetic charge (EC), adenosine triphosphate-related enzymes, and key enzymes of energy metabolism in both hippocampus and jejunum tissues of depressed rats were investigated using high-performance liquid chromatography, biochemical analysis, and real-time quantitative polymerase chain reaction, respectively. Spearman correlation analysis was conducted to construct a correlation network of "behavior-brain energy metabolism-intestinal energy metabolism" of depression.
RESULTS:
XYS significantly reduced the abnormal behaviors that observed in depressed rats and increased the EC and the activity of Na+-K+-adenosine triphosphatase (ATPase) and Ca2+-Mg2+-ATPase in hippocampus and jejunum tissues of depressed rats. XYS restored the key energetic pathways that had been interrupted by depression, including glycolysis, tricarboxylic acid cycle, and oxidative phosphorylation. Furthermore, XYS exhibited antidepressive effects in terms of regulating energy metabolism in tissues of both brain and intestine.
CONCLUSION
XYS significantly corrected the disturbances in EC and energy metabolism-related enzymes of both brain and intestinal tissues, alleviating both core and concomitant symptoms of depression. The current findings underscore the role of energy metabolism in the antidepressive activity of XYS, providing a fresh perspective on depression, and novel research strategies for revealing the mechanism of actions of traditional Chinese medicines on multi-site and multi-symptom diseases. Please cite this article as: Xiao MT, Wang SY, Wu XL, Zhao ZY, Wang HM, Liu HM, Qin XM, Liu XJ. Antidepressant mechanism of Xiaoyaosan: A perspective from energy metabolism of the brain and intestine. J Integr Med. 2025; 23(6):706-720.
Animals
;
Energy Metabolism/drug effects*
;
Antidepressive Agents/therapeutic use*
;
Drugs, Chinese Herbal/therapeutic use*
;
Brain/drug effects*
;
Male
;
Depression/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Intestines/drug effects*
;
Hippocampus/drug effects*

Result Analysis
Print
Save
E-mail