1.Strategies for Building an Artificial Intelligence-Empowered Trusted Federated Evidence-Based Analysis Platform for Spleen-Stomach Diseases in Traditional Chinese Medicine
Bin WANG ; Huiying ZHUANG ; Zhitao MAN ; Lifeng REN ; Chang HE ; Chen WU ; Xulei HU ; Xiaoxiao WEN ; Chenggong XIE ; Xudong TANG
Journal of Traditional Chinese Medicine 2026;67(1):95-102
This paper outlines the development of artificial intelligence (AI) and its applications in traditional Chinese medicine (TCM) research, and elucidates the roles and advantages of large language models, knowledge graphs, and natural language processing in advancing syndrome identification, prescription generation, and mechanism exploration. Using spleen-stomach diseases as an example, it demonstrates the empowering effects of AI in classical literature mining, precise clinical syndrome differentiation, efficacy and safety prediction, and intelligent education, highlighting an upgraded research paradigm that evolves from data-driven and knowledge-driven approaches to intelligence-driven models. To address challenges related to privacy protection and regulatory compliance in cross-institutional data collaboration, a "trusted federated evidence-based analysis platform for TCM spleen-stomach diseases" is proposed, integrating blockchain-based smart contracts, federated learning, and secure multi-party computation. The deep integration of AI with privacy-preserving computing is reshaping research and clinical practice in TCM spleen-stomach diseases, providing feasible pathways and a technical framework for building a high-quality, trustworthy TCM big-data ecosystem and achieving precision syndrome differentiation.
2.Development of Electrospinning Setup for Vascular Tissue-Engineering Application with Thick-Hierarchical Fiber Alignment
Shen CHEN ; Chao XIE ; Xiaoxi LONG ; Xianwei WANG ; Xudong LI ; Peng LIU ; Jiabin LIU ; Zuyong WANG
Tissue Engineering and Regenerative Medicine 2025;22(2):195-210
BACKGROUND:
Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.
METHODS:
A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring. The impact of process parameters on fiber size and morphology was investigated. The structure and functions of the scaffolds were evaluated through material characterization and assessments of cellular biocompatibility.
RESULTS:
The new setup enabled controlled deposition of fibers in different designed orientations. The fabricated small-diameter vascular scaffolds consisted of an inner layer of longitudinally oriented fibers and an outer layer of circumferentially oriented fibers (L + C vascular scaffold). Key parameters, including rotational speed, the utilization of the auxiliary electrode, and top-to-collector distance (TCD) significantly influenced fiber orientation. Additionally, voltage, TCD, feed rate, needle size, auxiliary electrode and collector-auxiliary electrode distance affected fiber diameter and distribution. Mechanical advantages and improved surface wettability of L + C vascular scaffold were confirmed through tensile testing and water contact angle. Cellular experiments indicated that L + C vascular scaffold facilitated cell adhesion and proliferation, with human umbilical vein endothelial cells and smooth muscle cells attaching and elongating along the fiber direction of the inner and outer layer, respectively.
CONCLUSION
This study demonstrated the feasibility of fabricating fiber-aligned, thick-walled vascular scaffolds using a modified electrospinning setup. The findings provided insights into how the auxiliary electrode, specific collector influenced fiber deposition, potentially advancing biomimetic vascular scaffold engineering.
3.Development of Electrospinning Setup for Vascular Tissue-Engineering Application with Thick-Hierarchical Fiber Alignment
Shen CHEN ; Chao XIE ; Xiaoxi LONG ; Xianwei WANG ; Xudong LI ; Peng LIU ; Jiabin LIU ; Zuyong WANG
Tissue Engineering and Regenerative Medicine 2025;22(2):195-210
BACKGROUND:
Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.
METHODS:
A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring. The impact of process parameters on fiber size and morphology was investigated. The structure and functions of the scaffolds were evaluated through material characterization and assessments of cellular biocompatibility.
RESULTS:
The new setup enabled controlled deposition of fibers in different designed orientations. The fabricated small-diameter vascular scaffolds consisted of an inner layer of longitudinally oriented fibers and an outer layer of circumferentially oriented fibers (L + C vascular scaffold). Key parameters, including rotational speed, the utilization of the auxiliary electrode, and top-to-collector distance (TCD) significantly influenced fiber orientation. Additionally, voltage, TCD, feed rate, needle size, auxiliary electrode and collector-auxiliary electrode distance affected fiber diameter and distribution. Mechanical advantages and improved surface wettability of L + C vascular scaffold were confirmed through tensile testing and water contact angle. Cellular experiments indicated that L + C vascular scaffold facilitated cell adhesion and proliferation, with human umbilical vein endothelial cells and smooth muscle cells attaching and elongating along the fiber direction of the inner and outer layer, respectively.
CONCLUSION
This study demonstrated the feasibility of fabricating fiber-aligned, thick-walled vascular scaffolds using a modified electrospinning setup. The findings provided insights into how the auxiliary electrode, specific collector influenced fiber deposition, potentially advancing biomimetic vascular scaffold engineering.
4.De novo patients with high-volume metastatic hormone-sensitive prostate cancer can benefit from the addition of docetaxel to triplet therapy: Network-analysis and systematic review.
Hanxu GUO ; Chengqi JIN ; Li DING ; Jun XIE ; Jing XU ; Ruiliang WANG ; Hong WANG ; Changcheng GUO ; Jiansheng ZHANG ; Bo PENG ; Xudong YAO ; Jing YUAN ; Bin YANG
Chinese Medical Journal 2025;138(2):231-233
5.Development of Electrospinning Setup for Vascular Tissue-Engineering Application with Thick-Hierarchical Fiber Alignment
Shen CHEN ; Chao XIE ; Xiaoxi LONG ; Xianwei WANG ; Xudong LI ; Peng LIU ; Jiabin LIU ; Zuyong WANG
Tissue Engineering and Regenerative Medicine 2025;22(2):195-210
BACKGROUND:
Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.
METHODS:
A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring. The impact of process parameters on fiber size and morphology was investigated. The structure and functions of the scaffolds were evaluated through material characterization and assessments of cellular biocompatibility.
RESULTS:
The new setup enabled controlled deposition of fibers in different designed orientations. The fabricated small-diameter vascular scaffolds consisted of an inner layer of longitudinally oriented fibers and an outer layer of circumferentially oriented fibers (L + C vascular scaffold). Key parameters, including rotational speed, the utilization of the auxiliary electrode, and top-to-collector distance (TCD) significantly influenced fiber orientation. Additionally, voltage, TCD, feed rate, needle size, auxiliary electrode and collector-auxiliary electrode distance affected fiber diameter and distribution. Mechanical advantages and improved surface wettability of L + C vascular scaffold were confirmed through tensile testing and water contact angle. Cellular experiments indicated that L + C vascular scaffold facilitated cell adhesion and proliferation, with human umbilical vein endothelial cells and smooth muscle cells attaching and elongating along the fiber direction of the inner and outer layer, respectively.
CONCLUSION
This study demonstrated the feasibility of fabricating fiber-aligned, thick-walled vascular scaffolds using a modified electrospinning setup. The findings provided insights into how the auxiliary electrode, specific collector influenced fiber deposition, potentially advancing biomimetic vascular scaffold engineering.
6.Development of Electrospinning Setup for Vascular Tissue-Engineering Application with Thick-Hierarchical Fiber Alignment
Shen CHEN ; Chao XIE ; Xiaoxi LONG ; Xianwei WANG ; Xudong LI ; Peng LIU ; Jiabin LIU ; Zuyong WANG
Tissue Engineering and Regenerative Medicine 2025;22(2):195-210
BACKGROUND:
Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.
METHODS:
A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring. The impact of process parameters on fiber size and morphology was investigated. The structure and functions of the scaffolds were evaluated through material characterization and assessments of cellular biocompatibility.
RESULTS:
The new setup enabled controlled deposition of fibers in different designed orientations. The fabricated small-diameter vascular scaffolds consisted of an inner layer of longitudinally oriented fibers and an outer layer of circumferentially oriented fibers (L + C vascular scaffold). Key parameters, including rotational speed, the utilization of the auxiliary electrode, and top-to-collector distance (TCD) significantly influenced fiber orientation. Additionally, voltage, TCD, feed rate, needle size, auxiliary electrode and collector-auxiliary electrode distance affected fiber diameter and distribution. Mechanical advantages and improved surface wettability of L + C vascular scaffold were confirmed through tensile testing and water contact angle. Cellular experiments indicated that L + C vascular scaffold facilitated cell adhesion and proliferation, with human umbilical vein endothelial cells and smooth muscle cells attaching and elongating along the fiber direction of the inner and outer layer, respectively.
CONCLUSION
This study demonstrated the feasibility of fabricating fiber-aligned, thick-walled vascular scaffolds using a modified electrospinning setup. The findings provided insights into how the auxiliary electrode, specific collector influenced fiber deposition, potentially advancing biomimetic vascular scaffold engineering.
7.Development of Electrospinning Setup for Vascular Tissue-Engineering Application with Thick-Hierarchical Fiber Alignment
Shen CHEN ; Chao XIE ; Xiaoxi LONG ; Xianwei WANG ; Xudong LI ; Peng LIU ; Jiabin LIU ; Zuyong WANG
Tissue Engineering and Regenerative Medicine 2025;22(2):195-210
BACKGROUND:
Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.
METHODS:
A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring. The impact of process parameters on fiber size and morphology was investigated. The structure and functions of the scaffolds were evaluated through material characterization and assessments of cellular biocompatibility.
RESULTS:
The new setup enabled controlled deposition of fibers in different designed orientations. The fabricated small-diameter vascular scaffolds consisted of an inner layer of longitudinally oriented fibers and an outer layer of circumferentially oriented fibers (L + C vascular scaffold). Key parameters, including rotational speed, the utilization of the auxiliary electrode, and top-to-collector distance (TCD) significantly influenced fiber orientation. Additionally, voltage, TCD, feed rate, needle size, auxiliary electrode and collector-auxiliary electrode distance affected fiber diameter and distribution. Mechanical advantages and improved surface wettability of L + C vascular scaffold were confirmed through tensile testing and water contact angle. Cellular experiments indicated that L + C vascular scaffold facilitated cell adhesion and proliferation, with human umbilical vein endothelial cells and smooth muscle cells attaching and elongating along the fiber direction of the inner and outer layer, respectively.
CONCLUSION
This study demonstrated the feasibility of fabricating fiber-aligned, thick-walled vascular scaffolds using a modified electrospinning setup. The findings provided insights into how the auxiliary electrode, specific collector influenced fiber deposition, potentially advancing biomimetic vascular scaffold engineering.
8.Exploring cellular plasticity and resistance mechanisms in lung cancer: Innovations and emerging therapies.
Caiyu JIANG ; Shenglong XIE ; Kegang JIA ; Gang FENG ; Xudong REN ; Youyu WANG
Journal of Pharmaceutical Analysis 2025;15(5):101179-101179
Non-small cell lung cancer (NSCLC) accounts for the majority of lung cancer cases and remains the leading cause of cancer-related mortality worldwide. Firstly, this review explores the limitations of conventional therapies, chemotherapy, radiotherapy, and surgery, focusing on the development of drug resistance and significant toxicity that often hinder their efficacy. Thereafter, advancements in targeted therapies, such as immune checkpoint inhibitors (ICIs) and tyrosine kinase inhibitors (TKIs), are discussed, highlighting their impact on improving outcomes for patients with specific genetic mutations, including c-ros oncogene 1 receptor tyrosine kinase (ROS1), anaplastic lymphoma kinase (ALK), and epidermal growth factor receptor (EGFR). Additionally, the emergence of novel immunotherapies and phytochemicals is examined, emphasizing their potential to overcome therapeutic resistance, particularly in advanced-stage diseases. The review also delves into the role of next-generation sequencing (NGS) in enabling personalized treatment approaches and explores the clinical potential of innovative agents, such as bispecific T-cell engagers (BiTEs) and antibody-drug conjugates (ADCs). Finally, we address the socioeconomic barriers that limit the accessibility of these therapies in low-resource settings and propose future research directions aimed at improving the long-term efficacy and accessibility of these treatments.
9.Expert consensus on classification and diagnosis of congenital orofacial cleft.
Chenghao LI ; Yang AN ; Xiaohong DUAN ; Yingkun GUO ; Shanling LIU ; Hong LUO ; Duan MA ; Yunyun REN ; Xudong WANG ; Xiaoshan WU ; Hongning XIE ; Hongping ZHU ; Jun ZHU ; Bing SHI
West China Journal of Stomatology 2025;43(1):1-14
Congenital orofacial cleft, the most common birth defect in the maxillofacial region, exhibits a wide range of prognosis depending on the severity of deformity and underlying etiology. Non-syndromic congenital orofacial clefts typically present with milder deformities and more favorable treatment outcomes, whereas syndromic congenital orofacial clefts often manifest with concomitant organ abnormalities, which pose greater challenges for treatment and result in poorer prognosis. This consensus provides an elaborate classification system for varying degrees of orofacial clefts along with corresponding diagnostic and therapeutic guidelines. Results serve as a crucial resource for families to navigate prenatal screening results or make informed decisions regarding treatment options while also contributing significantly to preventing serious birth defects within the development of population.
Humans
;
Cleft Lip/diagnosis*
;
Cleft Palate/diagnosis*
;
Consensus
;
Prenatal Diagnosis
;
Female
10.Efficacy of 1% povidone-iodine mouthwash combined with scaling and root planing in the treatment of periodontitis: a randomized, controlled trial.
Enyan LIU ; Dingyu DUAN ; Xudong XIE ; Haolai LI ; Maoxue LI ; Yi DING
West China Journal of Stomatology 2025;43(3):362-369
OBJECTIVES:
This study aimed to evaluate the therapeutic effect of 1% povidone-iodine mouthwash combined with scaling and root planing in patients with stage Ⅰ/Ⅱ class A/B periodontitis, and to provide a basis for the clinical application of povidone-iodine mouthwash.
METHODS:
Seventy-five subjects were included in this trial and randomly divided into three groups. After full-mouth ultrasonic supragingival cleansing, scaling and root planing, the placebo group was treated with sodium chloride injection (NaCl group), the control group was treated with compound chlorhexidine mouthwash (CHX group), and the experimental group was treated with 1% povidone-iodine mouthwash (PVP-I group), and rinsed their mouths for 1 week, respectively. Subjects were tested at 1, 4, and 12 weeks after dosing for clinical indicators, microbial composition of supragingival plaque, gingival crevicular fluid inflammatory marker levels, and patient-reported outcomes.
RESULTS:
Sixty-three subjects completed the follow-up. After treatment, the clinical indicators, microbial indicators, and inflammatory indicators were all significantly improved (P<0.05). Comparisons among the groups showed that one week after treatment, the bleeding index and plaque index of the CHX group and the PVP-I group were lower than those of the NaCl group, and the plaque index of the CHX group was lower than that of the PVP-I group (P<0.05). There were no statistically significant differences in the other clinical indicators among the groups (P>0.05). Twelve weeks after treatment, the Shannon index of the CHX group was lower than that of the NaCl group (P<0.05), and there were no statistically significant differences in the other microbial indicators among the groups (P>0.05). Twelve weeks after treatment, the interleukin-10 concentration of the CHX group was higher than that of the NaCl group (P<0.05), and there were no statistically significant differences in the other inflammatory indicators among the groups (P>0.05). The PVP-I group had the highest scores in terms of taste and oral odor. There was no obvious staining on the tooth surfaces and mucosa in all three groups.
CONCLUSIONS
1% PVP-I mouthwash combined with scaling and root planing can effectively reduce gingival inflammation and dental plaque, improve clinical symptoms in the short term. While its efficacy is not significantly inferior to that of chlorhexidine, PVP-I mouthwash is more acceptable to patients than chlorhexidine.
Humans
;
Povidone-Iodine/administration & dosage*
;
Mouthwashes/therapeutic use*
;
Dental Scaling
;
Root Planing
;
Periodontitis/microbiology*
;
Gingival Crevicular Fluid/chemistry*
;
Anti-Infective Agents, Local/therapeutic use*
;
Female
;
Male
;
Chlorhexidine/therapeutic use*
;
Dental Plaque/microbiology*
;
Middle Aged
;
Adult

Result Analysis
Print
Save
E-mail