1.Efficacy and safety of chimeric antigen receptor T cell therapy combined with zanubrutinib in the treatment of relapsed/refractory diffuse large B-cell lymphoma.
Langqi WANG ; Chunyan YUE ; Xuan ZHOU ; Jilong YANG ; Bo JIN ; Bo WANG ; Minhong HUANG ; Huifang CHEN ; Lijuan ZHOU ; Sanfang TU ; Yuhua LI
Chinese Medical Journal 2025;138(6):748-750
2.Association between cardiovascular-kidney-metabolic health metrics and long-term cardiovascular risk: Findings from the Chinese Multi-provincial Cohort Study.
Ziyu WANG ; Xuan DENG ; Zhao YANG ; Jiangtao LI ; Pan ZHOU ; Wenlang ZHAO ; Yongchen HAO ; Qiuju DENG ; Na YANG ; Lizhen HAN ; Yue QI ; Jing LIU
Chinese Medical Journal 2025;138(17):2139-2147
BACKGROUND:
The American Heart Association (AHA) introduced the concept of cardiovascular-kidney-metabolic (CKM) health and stage, reflecting the interaction among metabolism, chronic kidney disease (CKD), and the cardiovascular system. However, the association between CKM stage and the long-term risk of cardiovascular disease (CVD) has not been validated. This study aimed to evaluate the long-term CVD risk associated with CKM health metrics and CKM stage using data from a population-based cohort study.
METHODS:
In total, 5293 CVD-free participants were followed up to around 13 years in the Chinese Multi-provincial Cohort Study (CMCS). Considering the pathophysiologic progression of CKM health metrics abnormalities (comprising obesity, central adiposity, prediabetes, diabetes, hypertriglyceridemia, CKD, and metabolic syndrome), participants were divided into CKM stages 0, 1, and 2. The time-dependent Cox regression models were used to estimate the cardiovascular risk associated with CKM health metrics and stage. Additionally, broader CVD outcomes were examined, with a specific assessment of the impact of stage 3 in 2581 participants from the CMCS-Beijing subcohort.
RESULTS:
Among participants, 91.2% (4825/5293) had at least one abnormal CKM health metric, 8.8% (468/5293), 13.3% (704/5293), and 77.9% (4121/5293) were in CKM stages 0, 1, and 2, respectively; and 710 incident CVD cases occurred during a median follow-up time of 13.3 years (interquartile range: 12.1 to 13.6 years). Participants with each poor CKM health metric exhibited significantly higher CVD risk. Compared with stage 0, the hazard ratio (HR) (95% confidence interval [CI]) for CVD incidence was 1.31 (0.84-2.04) in stage 1 and 2.27 (1.57-3.28) in stage 2. Significant interactive impacts existed between CKM stage and age or sex, with higher CVD risk related to increased CKM stages in participants aged <60 years or females.
CONCLUSION
These findings highlight the contribution of CKM health metrics and CKM stage to the long-term risk of CVD, suggesting the importance of multi-component recognition and management of poor CKM health in CVD prevention.
Humans
;
Female
;
Male
;
Cardiovascular Diseases/etiology*
;
Middle Aged
;
Adult
;
Cohort Studies
;
Renal Insufficiency, Chronic/metabolism*
;
Aged
;
Risk Factors
;
Metabolic Syndrome/metabolism*
;
China
;
East Asian People
3.Characteristics, microbial composition, and mycotoxin profile of fermented traditional Chinese medicines.
Hui-Ru ZHANG ; Meng-Yue GUO ; Jian-Xin LYU ; Wan-Xuan ZHU ; Chuang WANG ; Xin-Xin KANG ; Jiao-Yang LUO ; Mei-Hua YANG
China Journal of Chinese Materia Medica 2025;50(1):48-57
Fermented traditional Chinese medicine(TCM) has a long history of medicinal use, such as Sojae Semen Praeparatum, Arisaema Cum Bile, Pinelliae Rhizoma Fermentata, red yeast rice, and Jianqu. Fermentation technology was recorded in the earliest TCM work, Shen Nong's Classic of the Materia Medica. Microorganisms are essential components of the fermentation process. However, the contamination of fermented TCM by toxigenic fungi and mycotoxins due to unstandardized fermentation processes seriously affects the quality of TCM and poses a threat to the life and health of consumers. In this paper, the characteristics, microbial composition, and mycotoxin profile of fermented TCM are systematically summarized to provide a theoretical basis for its quality and safety control.
Fermentation
;
Mycotoxins/analysis*
;
Drugs, Chinese Herbal/analysis*
;
Fungi/classification*
;
Bacteria/genetics*
;
Drug Contamination
;
Medicine, Chinese Traditional
4.Verification of resveratrol ameliorating vascular endothelial damage in sepsis-associated encephalopathy through HIF-1α pathway based on network pharmacology and experiment.
Rong LI ; Yue WU ; Wen-Xuan ZHU ; Meng QIN ; Si-Yu SUN ; Li-Ya WANG ; Mei-Hui TIAN ; Ying YU
China Journal of Chinese Materia Medica 2025;50(4):1087-1097
This study aims to investigate the mechanism by which resveratrol(RES) alleviates cerebral vascular endothelial damage in sepsis-associated encephalopathy(SAE) through network pharmacology and animal experiments. By using network pharmacology, the study identified common targets and genes associated with RES and SAE and constructed a protein-protein interaction( PPI) network. Gene Ontology(GO) analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis were performed to pinpoint key signaling pathways, followed by molecular docking validation. In the animal experiments, a cecum ligation and puncture(CLP) method was employed to induce SAE in mice. The mice were randomly assigned to the sham group, CLP group, and medium-dose and high-dose groups of RES. The sham group underwent open surgery without CLP, and the CLP group received an intraperitoneal injection of 0. 9% sodium chloride solution after surgery. The medium-dose and high-dose groups of RES were injected intraperitoneally with 40 mg·kg-1 and 60 mg·kg~(-1) of RES after modeling, respectively, and samples were collected 12 hours later. Neurological function scores were assessed, and the wet-dry weight ratio of brain tissue was detected. Serum superoxide dismutase(SOD), catalase( CAT) activity, and malondialdehyde( MDA) content were measured by oxidative stress kit. Histopathological changes in brain tissue were examined using hematoxylin-eosin(HE) staining. Transmission electron microscopy was employed to evaluate tight cell junctions and mitochondrial ultrastructure changes in cerebral vascular endothelium. Western blot analysis was performed to detect the expression of zonula occludens1( ZO-1), occludin, claudins-5, optic atrophy 1( OPA1), mitofusin 2(Mfn2), dynamin-related protein 1(Drp1), fission 1(Fis1), and hypoxia-inducible factor-1α(HIF-1α). Network pharmacology identified 76 intersecting targets for RES and SAE, with the top five core targets being EGFR, PTGS2, ESR1, HIF-1α, and APP. GO enrichment analysis showed that RES participated in the SAE mechanism through oxidative stress reaction. KEGG enrichment analysis indicated that RES participated in SAE therapy through HIF-1α, Rap1, and other signaling pathways. Molecular docking results showed favorable docking activity between RES and key targets such as HIF-1α. Animal experiment results demonstrated that compared to the sham group, the CLP group exhibited reduced nervous reflexes, decreased water content in brain tissue, as well as serum SOD and CAT activity, and increased MDA content. In addition, the CLP group exhibited disrupted tight junctions in cerebral vascular endothelium and abnormal mitochondrial morphology. The protein expression levels of Drp1, Fis1, and HIF-1α in brain tissue were increased, while those of ZO-1, occludin, claudin-5, Mfn2, and OPA1 were decreased. In contrast, the medium-dose and high-dose groups of RES showed improved neurological function, increased water content in brain tissue and SOD and CAT activity, and decreased MDA content. Cell morphology in brain tissue, tight junctions between endothelial cells, and mitochondrial structure were improved. The protein expressions of Drp1, Fis1, and HIF-1α were decreased, while those of ZO-1, occludin, claudin-5, Mfn2, and OPA1 were increased. This study suggested that RES could ameliorate cerebrovascular endothelial barrier function and maintain mitochondrial homeostasis by inhibiting oxidative stress after SAE damage, potentially through modulation of the HIF-1α signaling pathway.
Animals
;
Mice
;
Network Pharmacology
;
Resveratrol/administration & dosage*
;
Male
;
Sepsis-Associated Encephalopathy/genetics*
;
Signal Transduction/drug effects*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Endothelium, Vascular/metabolism*
;
Molecular Docking Simulation
;
Protein Interaction Maps/drug effects*
;
Humans
;
Sepsis/complications*
;
Oxidative Stress/drug effects*
6.Targeted screening and profiling of massive components of colistimethate sodium by two-dimensional-liquid chromatography-mass spectrometry based on self-constructed compound database.
Xuan LI ; Minwen HUANG ; Yue-Mei ZHAO ; Wenxin LIU ; Nan HU ; Jie ZHOU ; Zi-Yi WANG ; Sheng TANG ; Jian-Bin PAN ; Hian Kee LEE ; Yao-Zuo YUAN ; Taijun HANG ; Hai-Wei SHI ; Hongyuan CHEN
Journal of Pharmaceutical Analysis 2025;15(2):101072-101072
In-depth study of the components of polymyxins is the key to controlling the quality of this class of antibiotics. Similarities and variations of components present significant analytical challenges. A two-dimensional (2D) liquid chromatography-mass spectrometr (LC-MS) method was established for screening and comprehensive profiling of compositions of the antibiotic colistimethate sodium (CMS). A high concentration of phosphate buffer mobile phase was used in the first-dimensional LC system to get the components well separated. For efficient and high-accuracy screening of CMS, a targeted method based on a self-constructed high resolution (HR) mass spectrum database of CMS components was established. The database was built based on the commercial MassHunter Personal Compound Database and Library (PCDL) software and its accuracy of the compound matching result was verified with six known components before being applied to genuine sample screening. On this basis, the unknown peaks in the CMS chromatograms were deduced and assigned. The molecular formula, group composition, and origins of a total of 99 compounds, of which the combined area percentage accounted for more than 95% of CMS components, were deduced by this 2D-LC-MS method combined with the MassHunter PCDL. This profiling method was highly efficient and could distinguish hundreds of components within 3 h, providing reliable results for quality control of this kind of complex drugs.
7.Integrated-omics analysis defines subtypes of hepatocellular carcinoma based on circadian rhythm.
Xiao-Jie LI ; Le CHANG ; Yang MI ; Ge ZHANG ; Shan-Shan ZHU ; Yue-Xiao ZHANG ; Hao-Yu WANG ; Yi-Shuang LU ; Ye-Xuan PING ; Peng-Yuan ZHENG ; Xia XUE
Journal of Integrative Medicine 2025;23(4):445-456
OBJECTIVE:
Circadian rhythm disruption (CRD) is a risk factor that correlates with poor prognosis across multiple tumor types, including hepatocellular carcinoma (HCC). However, its mechanism remains unclear. This study aimed to define HCC subtypes based on CRD and explore their individual heterogeneity.
METHODS:
To quantify CRD, the HCC CRD score (HCCcrds) was developed. Using machine learning algorithms, we identified CRD module genes and defined CRD-related HCC subtypes in The Cancer Genome Atlas liver HCC cohort (n = 369), and the robustness of this method was validated. Furthermore, we used bioinformatics tools to investigate the cellular heterogeneity across these CRD subtypes.
RESULTS:
We defined three distinct HCC subtypes that exhibit significant heterogeneity in prognosis. The CRD-related subtype with high HCCcrds was significantly correlated with worse prognosis, higher pathological grade, and advanced clinical stages, while the CRD-related subtype with low HCCcrds had better clinical outcomes. We also identified novel biomarkers for each subtype, such as nicotinamide n-methyltransferase and myristoylated alanine-rich protein kinase C substrate-like 1.
CONCLUSION
We classify the HCC patients into three distinct groups based on circadian rhythm and identify their specific biomarkers. Within these groups greater HCCcrds was associated with worse prognosis. This approach has the potential to improve prediction of an individual's prognosis, guide precision treatments, and assist clinical decision making for HCC patients. Please cite this article as: Li XJ, Chang L, Mi Y, Zhang G, Zhu SS, Zhang YX, et al. Integrated-omics analysis defines subtypes of hepatocellular carcinoma based on circadian rhythm. J Integr Med. 2025; 23(4): 445-456.
Humans
;
Carcinoma, Hepatocellular/pathology*
;
Liver Neoplasms/pathology*
;
Circadian Rhythm/genetics*
;
Prognosis
;
Male
;
Female
;
Biomarkers, Tumor/genetics*
;
Middle Aged
;
Machine Learning
;
Computational Biology
8.Association of Human Whole-blood NAD+Levels with Nabothian Cyst
Ling XU ; Xuan Yue WANG ; Wei WANG ; Xue FAN ; Yu Xue CHEN ; Yun Tian ZHOU ; He Yu LIU ; Ye YU ; Fan YANG ; Yu Zhen JU ; Yong ZHOU ; Liang Deng WANG
Biomedical and Environmental Sciences 2024;37(5):471-478
Objective Little is known about the association between whole-blood nicotinamide adenine dinucleotide(NAD+)levels and nabothian cysts.This study aimed to assess the association between NAD+levels and nabothian cysts in healthy Chinese women. Methods Multivariate logistic regression analysis was performed to analyze the association between NAD+levels and nabothian cysts. Results The mean age was 43.0±11.5 years,and the mean level of NAD+was 31.3±5.3 μmol/L.Nabothian cysts occurred in 184(27.7%)participants,with single and multiple cysts in 100(15.0%)and 84(12.6%)participants,respectively.The total nabothian cyst prevalence gradually decreased from 37.4%to 21.6%from Q1 to Q4 of NAD+and the prevalence of single and multiple nabothian cysts also decreased across the NAD+quartiles.As compared with the highest NAD+quartile(≥34.4 μmol/L),the adjusted odds ratios with 95%confidence interval of the NAD+Q1 was 1.89(1.14-3.14)for total nabothian cysts.The risk of total and single nabothian cysts linearly decreased with increasing NAD+levels,while the risk of multiple nabothian cysts decreased more rapidly at NAD+levels of 28.0 to 35.0 μmol/L. Conclusion:Low NAD+levels were associated with an increased risk of total and multiple nabothian cysts.
9.Development and Application of Detection Methods for Capture and Transcription Elongation Rate of Bacterial Nascent RNA
Yuan-Yuan LI ; Yu-Ting WANG ; Zi-Chun WU ; Hao-Xuan LI ; Ming-Yue FEI ; Dong-Chang SUN ; O. Claudio GUALERZI ; Attilio FABBRETTI ; Anna Maria GIULIODORI ; Hong-Xia MA ; Cheng-Guang HE
Progress in Biochemistry and Biophysics 2024;51(9):2249-2260
ObjectiveDetection and quantification of RNA synthesis in cells is a widely used technique for monitoring cell viability, health, and metabolic rate.After exposure to environmental stimuli, both the internal reference gene and target gene would be degraded. As a result, it is imperative to consider the accurate capture of nascent RNA and the detection of transcriptional levels of RNA following environmental stimulation. This study aims to create a Click Chemistry method that utilizes its property to capture nascent RNA from total RNA that was stimulated by the environment. MethodsThe new RNA was labeled with 5-ethyluridine (5-EU) instead of uracil, and the azido-biotin medium ligand was connected to the magnetic sphere using a combination of “Click Chemistry” and magnetic bead screening. Then the new RNA was captured and the transcription rate of 16S rRNA was detected by fluorescence molecular beacon (M.B.) and quantitative reverse transcription PCR (qRT-PCR). ResultsThe bacterial nascent RNA captured by “Click Chemistry” screening can be used as a reverse transcription template to form cDNA. Combined with the fluorescent molecular beacon M.B.1, the synthesis rate of rRNA at 37℃ is 1.2 times higher than that at 15℃. The 16S rRNA gene and cspI gene can be detected by fluorescent quantitative PCR,it was found that the measured relative gene expression changes were significantly enhanced at 25℃ and 16℃ when analyzed with nascent RNA rather than total RNA, enabling accurate detection of RNA transcription rates. ConclusionCompared to other article reported experimental methods that utilize screening magnetic columns, the technical scheme employed in this study is more suitable for bacteria, and the operation steps are simple and easy to implement, making it an effective RNA capture method for researchers.
10.Functional study of glycosyltransferase genes CtUGT25 in the flavone biosynthesis pathway of Carthamus tinctorius L.
Shu-yi QI ; Lu-nuan WANG ; Bei-xuan HE ; Yue GAO ; Mei-li GUO
Acta Pharmaceutica Sinica 2024;59(6):1854-1863
UDP glycosyltransferase (UGT) is a terminal modifying enzyme for the formation of flavonoid glycosides. In this study, we obtained two glycosyltransferase genes,

Result Analysis
Print
Save
E-mail