1.Evaluation of Proficiency Validation Results for Air Change Rate Testing in Laboratory Animal Facilities
Wei LIU ; Xinyan ZHANG ; Fengtian HOU ; Zhongkan XU ; Liying MA
Laboratory Animal and Comparative Medicine 2025;45(1):87-95
Objective By organizing and implementing a laboratory proficiency validation plan for air change rate testing, this study aims to explore proficiency testing approaches in laboratory animal facilities, assess the current status of relevant laboratories regarding standard application and test capabilities, standardize air change rate testing methods, and ensure the accuracy and reliability of test results. Methods From September to November 2023, the National Institutes for Food and Drug Control (NIFDC) organized a laboratory proficiency validation plan for air change rate testing in laboratory animal facilities (Plan Number: NIFDC-PT-417). The proficiency testing was conducted on-site and consisted of two parts: a written test and practical operation. The written test was open-book. True/false questions focused on participants' understanding of specific clauses in relevant standards, while application-based questions assessed their ability to handle data processing in simulated testing scenarios. The practical operation was conducted according to the relevant criteria of the China National Accreditation Service for Conformity Assessment (CNAS). Two laboratory animal rooms were prepared as proficiency testing samples using a sample splitting approach. These rooms underwent uniformity and stability testing according to CNAS requirements and were approved. Participating laboratories were required to conduct three tests on each of the two laboratory animal rooms, complete the testing and calculation of air change rate within the specified timeframe, and submit their test result reports and original records. Results A total of 27 laboratories registered and participated in the proficiency testing. All participating laboratories submitted their results within the designated timeframe, and the outcomes of all tested laboratories were rated as satisfactory. Conclusion This proficiency validation program objectively and scientifically evaluates the air change rate testing capabilities of selected domestic laboratories, effectively promoting the overall improvement of testing capabilities in the industry. It provides technical support for regulatory authorities to standardize testing institutions and offers reliable references for the purchase of testing services. Through this activity, it was identified that some laboratories need to further enhance their calibration of instruments and the utilization of calibration results. Future efforts should focus on refining related standards to improve the accuracy and reliability of testing.
2.Neuroplasticity Mechanisms of Exercise-induced Brain Protection
Li-Juan HOU ; Lan-Qun MAO ; Wei CHEN ; Ke LI ; Xu-Dong ZHAO ; Yin-Hao WANG ; Zi-Zheng YANG ; Tian-He WEI
Progress in Biochemistry and Biophysics 2025;52(6):1435-1452
Neuroscience is a significant frontier discipline within the natural sciences and has become an important interdisciplinary frontier scientific field. Brain is one of the most complex organs in the human body, and its structural and functional analysis is considered the “ultimate frontier” of human self-awareness and exploration of nature. Driven by the strategic layout of “China Brain Project”, Chinese scientists have conducted systematic research focusing on “understanding the brain, simulating the brain, and protecting the brain”. They have made breakthrough progress in areas such as the principles of brain cognition, mechanisms and interventions for brain diseases, brain-like computation, and applications of brain-machine intelligence technology, aiming to enhance brain health through biomedical technology and improve the quality of human life. Due to limited understanding and comprehension of neuroscience, there are still many important unresolved issues in the field of neuroscience, resulting in a lack of effective measures to prevent and protect brain health. Therefore, in addition to actively developing new generation drugs, exploring non pharmacological treatment strategies with better health benefits and higher safety is particularly important. Epidemiological data shows that, exercise is not only an indispensable part of daily life but also an important non-pharmacological approach for protecting brain health and preventing neurodegenerative diseases, forming an emerging research field known as motor neuroscience. Basic research in motor neuroscience primarily focuses on analyzing the dynamic coding mechanisms of neural circuits involved in motor control, breakthroughs in motor neuroscience research depend on the construction of dynamic monitoring systems across temporal and spatial scales. Therefore, high spatiotemporal resolution detection of movement processes and movement-induced changes in brain structure and neural activity signals is an important technical foundation for conducting motor neuroscience research and has developed a set of tools based on traditional neuroscience methods combined with novel motor behavior decoding technologies, providing an innovative technical platform for motor neuroscience research. The protective effect of exercise in neurodegenerative diseases provides broad application prospects for its clinical translation. Applied research in motor neuroscience centers on deciphering the regulatory networks of neuroprotective molecules mediated by exercise. From the perspectives of exercise promoting neurogenesis and regeneration, enhancing synaptic plasticity, modulating neuronal functional activity, and remodeling the molecular homeostasis of the neuronal microenvironment, it aims to improve cognitive function and reduce the incidence of Parkinson’s disease and Alzheimer’s disease. This has also advanced research into the molecular regulatory networks mediating exercise-induced neuroprotection and facilitated the clinical application and promotion of exercise rehabilitation strategies. Multidimensional analysis of exercise-regulated neural plasticity is the theoretical basis for elucidating the brain-protective mechanisms mediated by exercise and developing intervention strategies for neurological diseases. Thus,real-time analysis of different neural signals during active exercise is needed to study the health effects of exercise throughout the entire life cycle and enhance lifelong sports awareness. Therefore, this article will systematically summarize the innovative technological developments in motor neuroscience research, review the mechanisms of neural plasticity that exercise utilizes to protect the brain, and explore the role of exercise in the prevention and treatment of major neurodegenerative diseases. This aims to provide new ideas for future theoretical innovations and clinical applications in the field of exercise-induced brain protection.
3.Postoperative Stage-based Functional Protection Strategies for Lung Cancer Based on Theory of "Lungs Governing Qi"
Luchang CAO ; Guanghui ZHU ; Ruike GAO ; Manman XU ; Xiaoyu ZHU ; Wei HOU ; Ying ZHANG ; Jie LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):86-93
Lung cancer (LC) is a significant global public health issue, with both its incidence and mortality rates ranking among the highest worldwide. The age-standardized incidence and mortality rates are increasing annually, posing a serious threat to the life and health of LC patients. Radical surgical resection is the primary treatment for malignant lung tumors. However, postoperative multidimensional functional impairments, including respiratory, mucosal, and psychological functions, are common. These impairments not only reduce patients' quality of life and affect their treatment tolerance and duration, but also negatively correlate with prognosis, facilitating disease recurrence and metastasis. At present, postoperative functional dysfunction after LC surgery remains a key clinical challenge that urgently needs to be addressed. There is a lack of standardized and regulated postoperative rehabilitation treatment management and traditional Chinese medicine (TCM) differentiation and treatment strategies for LC. Focusing on the core underlying pathogenesis of "Qi sinking" after LC surgery, and guided by the classical TCM theory of "lungs governing Qi", this study, based on the core concept of the "five perspectives on treatment" theory, innovatively proposes the respiratory dysfunction as the core pathogenesis of "Qi sinking in the chest" during the rapid rehabilitation phase, mucosal dysfunction as the core pathogenesis of "Yin deficiency and Qi sinking" during the postoperative adjuvant treatment phase, and the psychological dysfunction as the core pathogenesis of "Qi sinking with emotional constraint" during the consolidation phase. Accordingly, stage-specific dynamic functional protection strategies are constructed. In the rapid rehabilitation phase, the strategy emphasizes tonifying Qi and uplifting sinking Qi, with differentiation and treatment based on the principle of ''descending before ascending''. In the adjuvant treatment phase, the approach focuses on nourishing Yin and uplifting Qi, with prescription combinations that integrate unblocking and tonification. In the consolidation phase, the strategy aims to resolve constraint and uplift Qi, with clinical treatment emphasizing a combination of dynamic and static methods. At each stage of functional rehabilitation, clinical differentiation and treatment should support healthy Qi and eliminate pathogenic factors simultaneously. This study is the first to propose the concept of postoperative functional protection in TCM, offering a new approach for TCM differentiation and treatment in the full-cycle, stage-based, and dynamic protection of postoperative function in LC patients. It is expected to contribute to the construction and development of an integrated TCM-Western medicine comprehensive program for cancer prevention and treatment in China.
4.The Application of Spatial Resolved Metabolomics in Neurodegenerative Diseases
Lu-Tao XU ; Qian LI ; Shu-Lei HAN ; Huan CHEN ; Hong-Wei HOU ; Qing-Yuan HU
Progress in Biochemistry and Biophysics 2025;52(9):2346-2359
The pathogenesis of neurodegenerative diseases (NDDs) is fundamentally linked to complex and profound alterations in metabolic networks within the brain, which exhibit marked spatial heterogeneity. While conventional bulk metabolomics is powerful for detecting global metabolic shifts, it inherently lacks spatial resolution. This methodological limitation hampers the ability to interrogate critical metabolic dysregulation within discrete anatomical brain regions and specific cellular microenvironments, thereby constraining a deeper understanding of the core pathological mechanisms that initiate and drive NDDs. To address this critical gap, spatial metabolomics, with mass spectrometry imaging (MSI) at its core, has emerged as a transformative approach. It uniquely overcomes the limitations of bulk methods by enabling high-resolution, simultaneous detection and precise localization of hundreds to thousands of endogenous molecules—including primary metabolites, complex lipids, neurotransmitters, neuropeptides, and essential metal ions—directly in situ from tissue sections. This powerful capability offers an unprecedented spatial perspective for investigating the intricate and heterogeneous chemical landscape of NDD pathology, opening new avenues for discovery. Accordingly, this review provides a comprehensive overview of the field, beginning with a discussion of the technical features, optimal application scenarios, and current limitations of major MSI platforms. These include the widely adopted matrix-assisted laser desorption/ionization (MALDI)-MSI, the ultra-high-resolution technique of secondary ion mass spectrometry (SIMS)-MSI, and the ambient ionization method of desorption electrospray ionization (DESI)-MSI, along with other emerging technologies. We then highlight the pivotal applications of spatial metabolomics in NDD research, particularly its role in elucidating the profound chemical heterogeneity within distinct pathological microenvironments. These applications include mapping unique molecular signatures around amyloid β‑protein (Aβ) plaques, uncovering the metabolic consequences of neurofibrillary tangles composed of hyperphosphorylated tau protein, and characterizing the lipid and metabolite composition of Lewy bodies. Moreover, we examine how spatial metabolomics contributes to constructing detailed metabolic vulnerability maps across the brain, shedding light on the biochemical factors that render certain neuronal populations and anatomical regions selectively susceptible to degeneration while others remain resilient. Looking beyond current applications, we explore the immense potential of integrating spatial metabolomics with other advanced research methodologies. This includes its combination with three-dimensional brain organoid models to recapitulate disease-relevant metabolic processes, its linkage with multi-organ axis studies to investigate how systemic metabolic health influences neurodegeneration, and its convergence with single-cell and subcellular analyses to achieve unprecedented molecular resolution. In conclusion, this review not only summarizes the current state and critical role of spatial metabolomics in NDD research but also offers a forward-looking perspective on its transformative potential. We envision its continued impact in advancing our fundamental understanding of NDDs and accelerating translation into clinical practice—from the discovery of novel biomarkers for early diagnosis to the development of high-throughput drug screening platforms and the realization of precision medicine for individuals affected by these devastating disorders.
5.Predictive value of serum sFlt-1 and LTB4 for cerebral vasospasm after interventional embolization of intracranial aneurysms
Bing CAO ; Qi DING ; Yong-Da LIU ; Zhi-Wei DONG ; Yuan HOU ; Chun-Jiang LIU ; Xin-Wen XU
Journal of Regional Anatomy and Operative Surgery 2024;33(12):1062-1066
Objective To explore the predictive value of soluble fms-like tyrosine kinase-1(sFlt-1)and leukotriene B4(LTB4)in patients with intracranial aneurysms for cerebral vasospasm(CVS)after interventional embolization.Methods A total of 98 patients with intracranial aneurysms admitted to our hospital from January 2019 to September 2023 were regarded as the observation group,and were divided into the CVS group(32 cases)and the non CVS group(66 cases)according to whether CVS occurred or not within 3 to 5 days after surgery;102 healthy examinees in our hospital were selected as the control group.Enzyme-linked immunosorbent assay was used to detect serum levels of sFlt-1 and LTB4;the influencing factors for CVS after interventional embolization of intracranial aneurysms were analyzed by Logistic regression analysis;the predictive value of serum sFlt-1 and LTB4 levels for the occurrence of CVS after interventional embolization of intracranial aneurysms was analyzed by receiver operating characteristic(ROC)curve.Results The serum levels of sFlt-1 and LTB4 of patients in the observation group were obviously higher than those in the control group,and the differences were statistically significant(P<0.05).The serum levels of sFlt-1 and LTB4,and the proportions of patients with postoperative blood pressure fluctuation range≥30 mmHg and Hunt-Hess grade Ⅲ in the CVS group were obviously higher than those in the non CVS group,and the differences were statistically significant(P<0.05).SFlt-1(OR:2.985;95%CI:1.684 to 5.291)and LTB4(OR:2.868;95%CI:1.581 to 5.204)were the independent risk factors for CVS after interventional embolization of intracranial aneurysms(P<0.05).The area under the curve(AUC)of sFlt-1 and LTB4 alone and in combination for predicting the occurrence of CVS after interventional embolization of intracranial aneurysms were 0.839,0.825,and 0.915,respectively,with sensitivity of 84.44%,87.59%,and 81.36%,and specificity of 74.26%,75.87%,and 90.98%,respectively.The AUC of the combination of the two was higher than those of sFlt-1 and LTB4 alone,and the differences were statistically significant(Z=2.150,2.546,P<0.05).Conclusion The serum levels of sFlt-1 and LTB4 in patients with CVS after interventional embolization of intracranial aneurysms are increased,and the combination of the two can serve as the important indicators for predicting CVS.
6.The diagnostic value of 18F-PSMA PET/CT PRIMARY score combined with mpMRI PI-RADS sore in clinically significant prostate cancer
Hui ZHU ; Wenrui XU ; Yue GUO ; Longteng LIU ; Miao WANG ; Huimin HOU ; Chunmei LI ; Wei ZHANG ; Fugeng LIU ; Ming LIU
Chinese Journal of Urology 2024;45(6):439-444
Objective:To explore the diagnostic value of 18F-prostate specific membrane antigen (PSMA) PET/CT PRIMAY score combined with multiparameter MRI (mpMRI) PI-RADS score for clinically significant prostate cancer (CsPCa). Methods:The data of 63 patients with prostate cancer who underwent radical prostatectomy at Beijing Hospital from January 2019 to December 2023 were retrospectively analyzed. The median age was 70 (64, 75) years old with prostate-specific antigen (PSA) level of 8.46 (5.40, 14.80) ng/ml. All patients underwent 18F-PSMA PET/CT and mpMRI examination before surgery, and pathological large sections of prostate specimens were made after surgery. The prostate lesions were diagnosed and located by two radiologists and one pathologist respectively. Lesions with Gleason scores (GS)≥3+ 4 from the surgical pathology were diagnosed with CsPCa, and lesions with negative or GS=6 were diagnosed with non-CsPCa. The PSMA PET/CT images were evaluated using the PRIMARY study criteria (5-level PRlMARY score): no pattern (score of 1), diffuse transition zone or central zone(not focal) (score of 2), focal transition zone(score of 3), focal peripheral zone(score of 4), or an SUV max of at least 12 (score of 5). The degree of uptake of imaging agent in prostate lesions was semi-quantitatively evaluated using lesion-to-background ratios (LBR) of SUV max. MpMRI was evaluated according to the Prostate Imaging Reporting and Data System (PI-RADS) version 2.1. The patients were divided into CsPCa group and non-CsPCa group based on patients and lesions. Mann-Whitney U test and chi-square test were used to compare the differences between groups. Multivariate logistic regression analysis was performed to determine the independent predictive factors of CsPCa. Receiver operator characteristic (ROC) curve was used to determine the optimal diagnostic threshold for each independent predictor. Predictive models were constructed for PRIMARY score, PI-RADS score, and their combined application, and the diagnostic performance of each model for CsPCa was compared. Results:Of all 63 patients, there were 54 cases in CsPCa group (85.7%) and 9 cases in non-CsPCa group (14.3%).There was significant difference between CsPCa group and non-CsPCa group in the serum PSA level [9.64 (6.1, 15.3) ng/ml vs. 5.6 (4.6, 7.6) ng/ml]( P<0.05). There was no statistically significant difference in age [71 (64, 75) years vs. 65 (63, 69) years], and number of lesions [2 (1, 2) vs. 2 (1, 3)] (all P>0.05). Of all 109 lesions, there were 81 lesions in CsPCa group(including 49 lesions with Gleason score = 3+ 4, 16 lesions with Gleason score=4+ 3, 14 lesions with Gleason score = 8, and 2 lesions with Gleason score>8) and 28 lesions in non-CsPCa group(including 14 lesions with Gleason score = 3+ 3 and 14 with benign prostate lesions). There was significant difference between CsPCa group and non-CsPCa group in PRIMARY score [4 (3, 5) vs. 2 (1, 4)], LBR [2.69 (2.08, 4.48) vs. 1.89 (1.45, 2.48)], PI-RADS score [4 (3, 5) vs. 2 (2, 3)] (all P<0.05). There was no statistically significant difference in the lesion distribution including the number of lesions located in the transition zone [15(18.5%) vs. 8(28.6%)] and in the peripheral zone[66(81.5%) vs. 20(71.4%)]( P>0.05). Multivariate logistic regression analysis indicated that PRIMARY score ( OR=2.134, 95% CI 1.429-3.187) and PI-RADS score ( OR=2.689, 95% CI 1.618-4.469) were independent predictors of CsPCa (both P<0.01). ROC curves analysis revealed that the cut-off value for diagnosing CsPCa was both 3 for PRIMARY score and PI-RADS score. The accuracy for PRIMARY score, PI-RADS score, and their combined complication in diagnosing CsPCa was 72%, 67%, and 83%, respectively. The sensitivity was 72%, 63%, and 91%, and the specificity was 75%, 79%, and 57%, respectively. The positive predictive value was 89%, 89%, and 86%, and the negative predictive value was 48%, 42%, and 70%, respectively. The area under the curve of the PRIMARY score, PI-RADS score, and their combined complication of the ROC curve for CsPCa were 0.733 (95% CI 0.624-0.842), 0.708 (95% CI 0.599-0.817), and 0.743 (95% CI 0.623-0.862), respectively. The diagnostic efficacy of their combined complication was higher than PRIMARY score or PI-RADS score alone (both P<0.01). Conclusions:Both the 18F-PSMA PET/CT PRIMAY score and the mpMRI PI-RADS score have good diagnostic value for CsPCa. The combined application of the two imaging parameters can improve the accuracy, sensitivity, and negative predictive value, which have a higher diagnostic efficiency of CsPCa.
7.Chinese expert consensus on the diagnosis and treatment of traumatic supraorbital fissure syndrome (version 2024)
Junyu WANG ; Hai JIN ; Danfeng ZHANG ; Rutong YU ; Mingkun YU ; Yijie MA ; Yue MA ; Ning WANG ; Chunhong WANG ; Chunhui WANG ; Qing WANG ; Xinyu WANG ; Xinjun WANG ; Hengli TIAN ; Xinhua TIAN ; Yijun BAO ; Hua FENG ; Wa DA ; Liquan LYU ; Haijun REN ; Jinfang LIU ; Guodong LIU ; Chunhui LIU ; Junwen GUAN ; Rongcai JIANG ; Yiming LI ; Lihong LI ; Zhenxing LI ; Jinglian LI ; Jun YANG ; Chaohua YANG ; Xiao BU ; Xuehai WU ; Li BIE ; Binghui QIU ; Yongming ZHANG ; Qingjiu ZHANG ; Bo ZHANG ; Xiangtong ZHANG ; Rongbin CHEN ; Chao LIN ; Hu JIN ; Weiming ZHENG ; Mingliang ZHAO ; Liang ZHAO ; Rong HU ; Jixin DUAN ; Jiemin YAO ; Hechun XIA ; Ye GU ; Tao QIAN ; Suokai QIAN ; Tao XU ; Guoyi GAO ; Xiaoping TANG ; Qibing HUANG ; Rong FU ; Jun KANG ; Guobiao LIANG ; Kaiwei HAN ; Zhenmin HAN ; Shuo HAN ; Jun PU ; Lijun HENG ; Junji WEI ; Lijun HOU
Chinese Journal of Trauma 2024;40(5):385-396
Traumatic supraorbital fissure syndrome (TSOFS) is a symptom complex caused by nerve entrapment in the supraorbital fissure after skull base trauma. If the compressed cranial nerve in the supraorbital fissure is not decompressed surgically, ptosis, diplopia and eye movement disorder may exist for a long time and seriously affect the patients′ quality of life. Since its overall incidence is not high, it is not familiarized with the majority of neurosurgeons and some TSOFS may be complicated with skull base vascular injury. If the supraorbital fissure surgery is performed without treatment of vascular injury, it may cause massive hemorrhage, and disability and even life-threatening in severe cases. At present, there is no consensus or guideline on the diagnosis and treatment of TSOFS that can be referred to both domestically and internationally. To improve the understanding of TSOFS among clinical physicians and establish standardized diagnosis and treatment plans, the Skull Base Trauma Group of the Neurorepair Professional Committee of the Chinese Medical Doctor Association, Neurotrauma Group of the Neurosurgery Branch of the Chinese Medical Association, Neurotrauma Group of the Traumatology Branch of the Chinese Medical Association, and Editorial Committee of Chinese Journal of Trauma organized relevant experts to formulate Chinese expert consensus on the diagnosis and treatment of traumatic supraorbital fissure syndrome ( version 2024) based on evidence of evidence-based medicine and clinical experience of diagnosis and treatment. This consensus puts forward 12 recommendations on the diagnosis, classification, treatment, efficacy evaluation and follow-up of TSOFS, aiming to provide references for neurosurgeons from hospitals of all levels to standardize the diagnosis and treatment of TSOFS.
8.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
9.miR-185-5p alleviates the inflammatory response of acute gouty arthritis by inhibiting of IL-1β.
Nan HOU ; Xianghui MA ; Wei ZHOU ; Min YUAN ; Liming XU ; Huanxia SUN ; Yifan LIU ; Lining LIU ; Yanjun SHI ; Chunxian LI ; Yanfa FU
Chinese Journal of Cellular and Molecular Immunology 2024;40(1):51-57
Objective To investigate the relationship between interleukin-1β (IL-1β) and miR-185-5p in the process of joint injury in acute gouty arthritis (AGA). Methods The serum miR-185-5p levels of 89 AGA patients and 91 healthy volunteers were detected by real-time quantitative PCR. The correlation between miR-185-5p expression level and VAS score or IL-1β expression level was evaluated by Pearson correlation coefficient method. Receiver operating characteristic (ROC) curve was used to evaluate the diagnostic value of miR-185-5p in AGA. THP-1 cells were induced by sodium urate (MSU) to construct an in vitro acute gouty inflammatory cell model. After the expression level of miR-185-5p in THP-1 cells was upregulated or downregulated by transfection of miR-185-5p mimics or inhibitors in vitro, inflammatory cytokines of THP-1 cells, such as IL-1β, IL-8 and tumor necrosis factor α (TNF-α), were detected by ELISA. The luciferase reporter gene assay was used to determine the interaction between miR-185-5p and the 3'-UTR of IL-1β. Results Compared with the healthy control group, the expression level of serum miR-185-5p in AGA patients was significantly reduced. The level of serum miR-185-5p was negatively correlated with VAS score and IL-1β expression level. The area under the curve (AUC) was 0.905, the sensitivity was 80.17% and the specificity was 83.52%. Down-regulation of miR-185-5p significantly promoted the expression of IL-1β, IL-8 and tumor necrosis factor (TNF-α), while overexpression of miR-185-5p showed the opposite results. Luciferase reporter gene assay showed that IL-1β was the target gene of miR-185-5p, and miR-185-5p negatively regulated the expression of IL-1β. Conclusion miR-185-5p alleviates the inflammatory response in AGA by inhibiting IL-1β.
Humans
;
3' Untranslated Regions
;
Arthritis, Gouty/genetics*
;
Interleukin-1beta/genetics*
;
Interleukin-8
;
Luciferases
;
MicroRNAs/genetics*
;
Tumor Necrosis Factor-alpha
10.Evolution of chemistry and selection technology for DNA-encoded library.
Peixiang MA ; Shuning ZHANG ; Qianping HUANG ; Yuang GU ; Zhi ZHOU ; Wei HOU ; Wei YI ; Hongtao XU
Acta Pharmaceutica Sinica B 2024;14(2):492-516
DNA-encoded chemical library (DEL) links the power of amplifiable genetics and the non-self-replicating chemical phenotypes, generating a diverse chemical world. In analogy with the biological world, the DEL world can evolve by using a chemical central dogma, wherein DNA replicates using the PCR reactions to amplify the genetic codes, DNA sequencing transcripts the genetic information, and DNA-compatible synthesis translates into chemical phenotypes. Importantly, DNA-compatible synthesis is the key to expanding the DEL chemical space. Besides, the evolution-driven selection system pushes the chemicals to evolve under the selective pressure, i.e., desired selection strategies. In this perspective, we summarized recent advances in expanding DEL synthetic toolbox and panning strategies, which will shed light on the drug discovery harnessing in vitro evolution of chemicals via DEL.

Result Analysis
Print
Save
E-mail