1.Therapeutic Mechanisms of Xiebai San on Lung Heat-induced Cough and Asthma via Modulating Lung-Brain Axis Metabolism Based on Spatial Metabolomics
Yue XU ; Fuzhi MA ; Yeerjiang AYIMAN ; Lin ZHU ; Qingce ZANG ; Zhijie MA
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):41-48
ObjectiveBased on whole-animal mass spectrometry imaging technology, spatial metabolomics was used to characterize in situ the metabolic alteration patterns in the lungs and brain of a rat model of lung heat-induced cough and asthma, as well as after treatment with Xiebai San. MethodsNine Sprague-Dawley (SD) rats were randomly divided into a blank group (physiological saline), a model group (physiological saline), and a Xiebai San group (9 g·kg-1), with three rats in each group. The model group and the Xiebai San group were both induced using lipopolysaccharide-ovalbumin (LPS-OVA) to establish an asthma rat model. After treatment with Xiebai San, the animals were euthanized on day 21 and rapidly frozen in liquid nitrogen to preserve morphology. Whole-animal tissue sections were prepared using a cryomicrotome, and imaging was performed using the Air-flow-assisted Desorption Electrospray Ionization Mass Spectrometry Imaging (AFADESI-MSI) platform. Based on the corresponding optical images, ion data of metabolites from the lung and brain tissues of each group were extracted. Differential metabolites were analyzed using SIMCA and GraphPad Prism 9.0 software. Metabolites were identified using the HMDB (
2.Therapeutic Mechanisms of Xiebai San on Lung Heat-induced Cough and Asthma via Modulating Lung-Brain Axis Metabolism Based on Spatial Metabolomics
Yue XU ; Fuzhi MA ; Yeerjiang AYIMAN ; Lin ZHU ; Qingce ZANG ; Zhijie MA
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):41-48
ObjectiveBased on whole-animal mass spectrometry imaging technology, spatial metabolomics was used to characterize in situ the metabolic alteration patterns in the lungs and brain of a rat model of lung heat-induced cough and asthma, as well as after treatment with Xiebai San. MethodsNine Sprague-Dawley (SD) rats were randomly divided into a blank group (physiological saline), a model group (physiological saline), and a Xiebai San group (9 g·kg-1), with three rats in each group. The model group and the Xiebai San group were both induced using lipopolysaccharide-ovalbumin (LPS-OVA) to establish an asthma rat model. After treatment with Xiebai San, the animals were euthanized on day 21 and rapidly frozen in liquid nitrogen to preserve morphology. Whole-animal tissue sections were prepared using a cryomicrotome, and imaging was performed using the Air-flow-assisted Desorption Electrospray Ionization Mass Spectrometry Imaging (AFADESI-MSI) platform. Based on the corresponding optical images, ion data of metabolites from the lung and brain tissues of each group were extracted. Differential metabolites were analyzed using SIMCA and GraphPad Prism 9.0 software. Metabolites were identified using the HMDB (
3.Overview of the amendments and revisions to the General Technical Requirements adopted by the Volume Ⅳ of the Chinese Pharmacopoeia 2025 Edition
ZHANG Jun ; NING Baoming ; WEI Shifeng ; SHEN Haoyu ; SHANG Yue ; ZHU Ran ; XU Xinyi ; CHEN Lei ; LIU Tingting ; MA Shuangcheng
Drug Standards of China 2025;26(1):034-044
To introduce the general thinking, guidelines, work objectives and elaboration process of the general technical requirements adopted by volume Ⅳ of the Chinese Pharmacopoeia 2025 Edition, and to summarize and figure out the main characteristics on dosage forms, physico-chemical testing, microbial and biological testing, reference standards and guidelines The newly revised general chapters of pharmacopoeia give full play to the normative and guiding role of the Chinese Pharmacopoeia standard, track the frontier dynamics of international drug regulatory science and the elaboration of monographs, expand the application of state-of-the-art technologies, and steadily promote the harmonization and unification with the ICH guidelines; further enhance the overall capacity of TCM quality control, actively implement the 3 R principles on animal experiments, and practice the concept of environmental-friendly; replace and/or reduce the use of toxic and hazardous reagents, strengthen the requirements of drug safety control This paper aims to provide a full-view perspective for the comprehensive, correct understanding and accurate implementation of general technical requirements included in the Chinese Pharmacopoeia 2025 Edition.
4.Development and validation of a prognostic nomogram model for patients with the lower third and abdominal oesophageal adenocarcinoma
Zhengshui XU ; Dandan LIU ; Jiantao JIANG ; Ranran KONG ; Jianzhong LI ; Yuefeng MA ; Zhenchuan MA ; Jia CHEN ; Minxia ZHU ; Shaomin LI
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):201-207
Objective To establish an individualized nomogram model and evaluate its efficacy to provide a possible evaluation basis for the prognosis of lower third and abdominal part of oesophageal adenocarcinoma (EAC). Methods Lower third and abdominal part of EAC patients from 2010 to 2015 were chosen from the SEER Research Plus Database (17 Regs, 2022nov sub). The patients were randomly allocated to the training cohort and the internal validation cohort with a ratio of 7∶3 using bootstrap resampling. The Cox proportional hazards regression analysis was used to determine significant contributors to overall survival (OS) in EAC patients, which would be elected to construct the nomogram prediction model. C-index, calibration curve and receiver operating characteristic (ROC) curve were performed to evaluate its efficacy. Finally, the efficacy to evaluate the OS of EAC patients was compared between the nomogram prediction model and TNM staging system. Results In total, 3945 patients with lower third and abdominal part of EAC were enrolled, including 3475 males and 470 females with a median age of 65 (57-72) years. The 2761 patients were allocated to the training cohort and the remaining 1184 patients to the internal validation cohort. In the training and the internal validation cohorts, the C-index of the nomogram model was 0.705 and 0.713, respectively. Meanwhile, the calibration curve also suggested that the nomogram model had a strong capability of predicting 1-, 3-, and 5-year OS rates of EAC patients. The nomogram also had a higher efficacy than the TNM staging system in predicting 1-, 3-, and 5-year OS rates of EAC patients. Conclusion This nomogram prediction model has a high efficiency for predicting OS in the patients with lower third and abdominal part of EAC, which is higher than that of the current TNM staging system.
5.Compound Xishu Granules Inhibit Proliferation of Hepatocellular Carcinoma Cells by Regulating Ferroptosis
Yuan TIAN ; Yuxi WANG ; Zhen LIU ; Yuncheng MA ; Hongyu ZHU ; Xiaozhu WANG ; Qian LI ; Jian GAO ; Weiling WANG ; Wenhui XU ; Ting WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):37-45
ObjectiveTo study the mechanism of compound Xishu granules (CXG) in inhibiting the proliferation of hepatocellular carcinoma cells by regulating ferroptosis. MethodsThe transplanted tumor model of human Huh7 was established with nude mice and the successfully modeled mice were randomized into model, Fufang Banmao (0.21 g·kg-1), low-dose (1.87 g·kg-1) CXG, medium-dose (3.74 g·kg-1) CXG, and high-dose (7.49 g·kg-1) CXG groups. Mice were administrated with drinking water or CXG for 28 days, and the body weight and tumor volume were measured every 4 days. Hematoxylin-eosin staining was employed to observe the histopathological changes of tumors. The cell-counting kit-8 (CCK-8) was used to examine the survival rate of Huh7 cells treated with different concentrations (0, 31.25, 62.5, 125, 250, 500, 1 000 mg·L-1) of CXG for 24 h and 48 h. CA-AM, DCFH-DA, and C11-BODIPY581/591 fluorescent probes were used to determine the intracellular levels of ferrous ion (Fe2+), reactive oxygen species (ROS), and lipid peroxide (LPO), respectively. The colorimetric method was employed to measure the levels of glutathione (GSH) and superoxide dismutase (SOD). Western blot was employed to determine the protein levels of glutathione peroxidase 4 (GPX4), transferrin receptor 1 (TFR1), and ferritin heavy chain 1 (FTH1), respectively. ResultsIn the animal experiment, compared with the model group, the drug treatment groups showed reductions in the tumor volume from day 12 (P<0.01). After treatment, the Fufang Banmao and low-, medium-, and high-dose CXG groups had lower tumor volume, relative tumor volume, and tumor weight than the model group (P<0.05), with tumor inhibition rates of 48.99%, 79.93%, 91.38%, and 97.36%, respectively. Moreover, the CXG groups had lower tumor volume and relative tumor volume (P<0.05 in all the three dose groups) and lower tumor weight (P<0.05 in medium-dose and high-dose groups) than the Fufang Banmao group. Compared with the model group, the drug treatment groups showed reduced number of tumor cells, necrotic foci with karyopyknosis, nuclear fragmentation, and nucleolysis, and the high-dose CXG group showed an increase in the proportion of interstitial fibroblasts. In the cell experiment, compared with the blank group, CXG reduced the survival rate of Huh7 cells in a dose-dependent manner after incubation for 24 h and 48 h (P<0.05). Compared with the blank group, the RSL3 group and the low-, medium-, and high-dose CXG groups showed a decrease in the relative fluorescence intensity of CA-AM and increases in the fluorescence intensity of DCFH-DA and fluorescence ratio of C11-BODIPY581/591, which indicated elevations in the levels of Fe2+ (P<0.01), ROS (P<0.05), and LPO (P<0.01), respectively. Compared with the blank group, the RSL3 and low-, medium-, and high-dose CXG groups showed lowered levels of GSH and SOD (P<0.05). In addition, the RSL3 group and the medium- and high-dose CXG groups showed down-regulated expression of GPX4 and FTH1 (P<0.05), and the low- and high-dose CXG groups presented up-regulated expression of TFR1 (P<0.05). ConclusionCXG suppresses the proliferation of hepatocellular carcinoma cells by inducing ferroptosis via downregulating the GSH-GPX4 signaling axis and increasing intracellular Fe2+and LPO levels.
6.Modulation of colonic DNA methyltransferase by mild moxibustion and electroacupuncture in ulcerative colitis TET2 knockout mice
Gege FENG ; Yue ZHANG ; Huangan WU ; Lu ZHU ; Hongxiao XU ; Zhe MA ; Yan HUANG
Digital Chinese Medicine 2025;8(1):100-110
Objective:
To investigate the mechanism of in alleviating colonic mucosal inflammation in ten-eleven translocation (TET) protein 2 gene knockout (TET2-/-) mice with ulcerative colitis (UC) by regulating DNA methyltransferase (DNMT) and DNA hydroxymethylase.
Methods:
Male specific pathogen-free (SPF) grade C57BL/6J wild-type (WT) mice (n = 8) and TET2-/- mice (n = 20) were used to establish UC models by freely drinking 3% dextran sulfate sodium solution for 7 d. After UC model validation through histopathological examination in two mice from each type, the remaining mice were divided into four groups (n = 6 in each group): WT model (WT + UC), TET2-/- model (TET2-/- + UC), TET2-/- mild moxibustion (TET2-/- + MM), and TET2-/- electroacupuncture (TET2-/- + EA) groups. TET2-/- + MM group received mild moxibustion on Tianshu (ST25) and Qihai (CV6) for 10 min daily for 7 d. The TET2-/- + EA group also applied electroacupuncture (1 mA, 2/100 Hz) at the same acupoints for 10 min daily for 7 d. The disease activity index (DAI) scores of each group of mice were accessed daily. The colon lengths of mice in groups were measured following intervention. The pathological changes in the colon tissues were observed with hematoxylin and eosin (HE) staining. The concentrations of interleukin (IL)-6, C-C motif chemokine 17 (CCL17), and C-X-C motif chemokine ligand 10 (CXCL10) in serum were detected by enzyme-linked immunosorbent assay (ELISA). The expression of DNMT proteins (DNMT1, DNMT3A, and DNMT3B) in the colon tissues was detected by immunohistochemistry. The expression of 5-methylcytosine (5-mC), 5-hydroxymethylcytosine (5-hmC), histone deacetylase 2 (HDAC2), and DNA hydroxymethylase family proteins (TET 1 and TET3) was detected using immunofluorescence, which also determined the co-localization of TET1 and IL-6 protein.
Results:
Compared with WT + UC group, TET2-/- + UC group exhibited significantly higher DAI scores and shorter colon lengths (P < 0.01). Both mild moxibustion and electroacupuncture significantly decreased DAI scores and ameliorated colon shortening in TET2-/- mice (P < 0.001). Histopathological scores of TET2-/- + UC mice were significantly higher than those of WT + UC group (P < 0.001) and were significantly reduced after both mild moxibustion and electroacupuncture interventions (P < 0.001). Serum levels of IL-6, CCL17, and CXCL10 were significantly elevated in TET2-/- + UC group compared with WT + UC group (P < 0.001). Mild moxibustion significantly reduced IL-6, CCL17, and CXCL10 levels (P < 0.001, P < 0.001, and P < 0.01, respectively), while electroacupuncture also significantly reduced IL-6, CCL17, and CXCL10 levels (P < 0.05, P < 0.01, and P < 0.01, respectively). TET2-/- + UC mice showed increased expression levels of DNMT1, DNMT3A , DNMT3B, and 5-mC (P < 0.05, P < 0.01 and P < 0.001, respectively), with decreased expression levels of TET1, TET3, 5-hmC, and HDAC2 (P < 0.001). Mild moxibustion significantly reduced DNMT1, DNMT3B, and 5-mC levels (P < 0.05, P < 0.01, and P < 0.001, respectively), while increasing expression levels of TET1, TET3, 5-hmC, and HDAC2 (P < 0.001, P < 0.001, P < 0.05, and P < 0.001, respectively). Electroacupuncture significantly decreased 5-mC and DNMT3B levels (P < 0.001 and P < 0.01, respectively) and increased 5-hmC and HDAC2 levels (P < 0.05 and P < 0.001, respectively), but did not significantly affect TET1 and TET3 expression (P > 0.05). Compared with TET2-/- + MM group, TET2-/- + EA group showed significantly higher 5-mC expression (P < 0.001). TET2-/- + UC group exhibited markedly increased IL-6 expression and higher co-localization of TET1 and IL-6 in mucosal epithelium, whereas minimal IL-6 expression was observed in the other groups.
Conclusion
Mild moxibustion and electroacupuncture significantly ameliorate colonic inflammation exacerbated by TET2 deficiency in UC mice via epigenetic modulation. Distinct mechanisms exist between the two interventions: mild moxibustion regulates both DNMT and hydroxymethylase, whereas electroacupuncture primarily affects DNMT.
7.A case-crossover study on association between ambient temperature and injury incidence in Shenzhen City
Yan MA ; Qijiong ZHU ; Weicong CAI ; Ping XU ; Zhixue LI ; Jianxiong HU ; Wenjun MA ; Tao LIU ; Ying XU ; Ji PENG
Journal of Environmental and Occupational Medicine 2025;42(5):536-542
Background Under the background of global warming, research on association between ambient temperature and risk of injury is needed. Objective To examine the effect of temperature on injury in Bao'an district, Shenzhen and identify the sensitive population, thereby providing a scientific basis for formulating prevention and control strategies and measures of injury. Methods The injury reports from the Injury Surveillance System and the meteorological data of Bao'an District between 2018 to 2022 were collected. The meteorological data were sourced from the fifth generation of the European Centre for Medium-Range Weather Forecasts (ECMWF) land reanalysis data. Based on time-stratified case-crossover design, conditional logistic regression combined with distributed lag nonlinear model was used to evaluate the exposure-response association between ambient temperature and injury. The stratified analyses were further conducted by gender, age, and causes of injury. Results A total of
8.Genome-wide association study of rubella virus vaccine strain BRD-Ⅱ
Yingmei XU ; Yongqiang ZHU ; Xin ZHOU ; Zhaoyang LIU ; Leijun MA ; Zhewen CHEN ; Yueye ZHAO ; Tiaoxia ZHU
Shanghai Journal of Preventive Medicine 2025;37(5):461-466
ObjectiveTo perform a genome-wide association study of rubella virus vaccine strain BRD-Ⅱ, so as to fully grasp the sequence characteristics of this genome. MethodsSecond-generation sequencing method was used to conduct the whole-genome sequencing on the vaccine strain BRD-Ⅱ, and the affinity tree of this genome with some vaccine strains and wild-type rubella virus strains was analyzed using the maximum likelihood method. The average genetic distance of nucleic acid sequence of each vaccine strain protein was determined. And homology comparison of structural proteins of each rubella vaccine strain, plus the comparison between this genome with the AY258323.1 genome sequence, were conducted to analyze the homology of E1 protein between the wild-type rubella virus reference strain and vaccine strain BRD-Ⅱ. ResultsThe sequencing results showed that the BRD-Ⅱ strain was a single-molecule single-stranded positive-strand ribonucleic acid (RNA), composed of 9 778 nucleotides, with a GC content of 69.35 %. The C protein was composed of 300 amino acids, the E2 glycoprotein was composed of 282 amino acids, and the E1 glycoprotein was composed of 481 amino acids. The results of preliminary analysis showed that the average genetic distances of nucleic acid sequences were 0.066 700 for the P150 protein, 0.061 933 for the P90 protein, 0.057 850 for the C protein, 0.068 167 for the E2 protein, and 0.068 833 for the E1 protein, respectively. The amino acid sequences in the E2 protein and E1 protein regions of the two BRD-Ⅱ strains did not change, confirming the conserved regions of the E1 protein by comparison. ConclusionThe sequence characteristics of the genome are clarified, which have laid a broad foundation for the subsequent detection of the genetic stability of the main antigen genes.
9.Influence of COVID-19 infection on the early clinical efficacy of patients undergoing single valve replacement surgery: A retrospective cohort study
Liu XU ; Yongfeng HUO ; Lijun TIAN ; Yun ZHU ; Juan XIAO ; Ruiyan MA
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(05):634-638
Objective To investigate the impact of COVID-19 infection on the early clinical outcomes of patients undergoing valve replacement. Methods Perioperative data of patients who underwent single valve replacement at the Second Affiliated Hospital of Chinese People's Liberation Army Medical University from January to February 2023 were consecutively collected. Based on COVID-19 infection status, patients were divided into a COVID-19 group and a non-COVID-19 group. The perioperative data were compared between the two groups. Results A total of 136 patients were included, comprising 53 males and 83 females, with a mean age of (53.4±10.2) years. There were 32 patients receiving aortic valve replacements, 102 mitral valve replacements, and 2 tricuspid valve replacements. The COVID-19 group comprised 70 patients, and the non-COVID-19 group included 66 patients. No statistical difference was observed in the incidence of postoperative complications between the two groups [9.09% (6/66) vs. 11.43% (8/70), P=0.654]. However, the COVID-19 group had longer postoperative mechanical ventilation duration [1 201.00 (1 003.75, 1 347.75) min vs. 913.50 (465.50, 1 251.00) min, P=0.001] and ICU stay [3 (2, 3) days vs. 2 (2, 3) days, P<0.001] compared to the non-COVID-19 group. Additionally, troponin I [4.76 (2.55, 7.93) ng/mL vs. 2.66 (1.19, 5.65) ng/mL, P=0.001] and brain natriuretic peptide [608.50 (249.75, 1 150.00) pg/mL vs. 192.00 (100.93, 314.75) pg/mL, P<0.001] levels were significantly higher in the COVID-19 group. Conclusion For patients with single valve disease undergoing elective surgery, short-term outcomes after recovery from COVID-19 infection are favorable, with no significant increase in in-hospital mortality or postoperative complication rates.
10.Gut microbiota and Parkinson's disease.
Lin WANG ; Ying CUI ; Bingyu HAN ; Yitong DU ; Kenish Sirajbhai SALEWALA ; Shiya WANG ; Wenlu ZHAO ; Hongxin ZHANG ; Sichen WANG ; Xinran XU ; Jianpeng MA ; Yan ZHU ; Houzhen TUO
Chinese Medical Journal 2025;138(3):289-297
Emerging evidence suggests that dysbiosis of the gut microbiota is associated with the pathogenesis of Parkinson's disease (PD), a prevalent neurodegenerative disorder. The microbiota-gut-brain axis plays a crucial role in the development and progression of PD, and numerous studies have demonstrated the potential therapeutic benefits of modulations in the intestinal microbiota. This review provides insights into the characterization of the gut microbiota in patients with PD and highlights associations with clinical symptoms and underlying mechanisms. The discussion underscores the increased influence of the gut microbiota in the pathogenesis of PD. While the relationship is not fully elucidated, existing research demonstrates a strong correlation between changes in the composition of gut microbiota and disease development, and further investigation is warranted to explain the specific underlying mechanisms.
Humans
;
Parkinson Disease/microbiology*
;
Gastrointestinal Microbiome/physiology*
;
Dysbiosis/microbiology*

Result Analysis
Print
Save
E-mail