1.Effects of two intermittent fasting strategies on postprandial lipid metabolism in adults
Manman SHAO ; Xiaohui WEI ; Yuanchao LI ; Mingjing XU ; Tao YING ; Gengsheng HE ; Yuwei LIU
Shanghai Journal of Preventive Medicine 2025;37(1):64-71
ObjectiveTo investigate the effects and potential mechanisms of morning and evening fasting on postprandial lipid responses, a post hoc analysis based on a crossover randomized controlled trial was conducted to assess the effects of different fasting strategies on postprandial lipid metabolism in community residents in Shanghai. MethodsA total of 23 participants took part in a randomized crossover trial involving two intervention days: morning fasting and evening fasting, with a washout period of 6 days between intervention days. Two-way analysis of variance was used to test the differences in total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and the relative expression of circadian clock genes before and after the next meal under fasting. Wilcoxon rank sum tests were used to analyze the different metabolites between the two groups. Principal component analysis and Orthogonal partial least squares-discriminant analysis were conducted to evaluate the ability of metabolites to differentiate between morning fasting and evening fasting and identify the important differential metabolites. After adjusting for age, sex, and BMI, a partial correlation analysis was performed to identify metabolites associated with plasma lipids. In addition, important metabolites associated with plasma lipids were computed by pathway enrichment analysis. ResultsAfter evening fasting intervention, fasting TG level [(0.37±0.29) vs (0.27±0.18)] mmol·L-1, fasting and postprandial change values in TC [(2.74±0.47) vs (2.51±0.27)] mmol·L-1 and LDL-C [(1.32±0.38) vs (0.99±0.27)] mmol·L-1 were significantly lower than those after morning fasting (P<0.05). While, change values of fasting LDL-C [(0.89±0.37) vs (1.14±0.37)] mmol·L-1 and TG [(1.14±0.19) vs (1.28±0.17)] mmol·L-1 were significantly higher than those after morning fasting intervention (P<0.05). After fasting intervention, the relative expression of AMPK, CRY1, CLOCK, MTNR1B, AANAT, and ASMT was correlated with the amount of plasma lipid changes (P<0.05). Specifically, CLOCK and AANAT were upregulated following evening fasting and downregulated after morning fasting. Among the 217 important differential metabolites, 111 were correlated with plasma lipids, and which were primarily enriched in the cysteine and methionine metabolism pathways (P<0.05). ConclusionCompared to morning fasting, evening fasting was more effective in improving postprandial lipid responses, indicating that an evening fasting window during intermittent fasting could be conducive to cardiovascular disease prevention in adults. Meanwhile, it is suggested that morning and evening fasting may affect lipid responses through circadian rhythm oscillations and the cysteine and methionine metabolism pathways.
2.Impact of Onset-to-Door Time on Endovascular Therapy for Basilar Artery Occlusion
Tianlong LIU ; Chunrong TAO ; Zhongjun CHEN ; Lihua XU ; Yuyou ZHU ; Rui LI ; Jun SUN ; Li WANG ; Chao ZHANG ; Jianlong SONG ; Xiaozhong JING ; Adnan I. QURESHI ; Mohamad ABDALKADER ; Thanh N. NGUYEN ; Raul G. NOGUEIRA ; Jeffrey L. SAVER ; Wei HU
Journal of Stroke 2025;27(1):140-143
3.Impact of Onset-to-Door Time on Endovascular Therapy for Basilar Artery Occlusion
Tianlong LIU ; Chunrong TAO ; Zhongjun CHEN ; Lihua XU ; Yuyou ZHU ; Rui LI ; Jun SUN ; Li WANG ; Chao ZHANG ; Jianlong SONG ; Xiaozhong JING ; Adnan I. QURESHI ; Mohamad ABDALKADER ; Thanh N. NGUYEN ; Raul G. NOGUEIRA ; Jeffrey L. SAVER ; Wei HU
Journal of Stroke 2025;27(1):140-143
4.Role and mechanism of caffeic acid in a mouse model of severe acute pancreatitis
Siyu XU ; Tao LIU ; Lulu LAN ; Yining XUE ; Wei WEI ; Yi HAN ; Sucheng MU ; Haiyan SONG ; Shilin DU
Journal of Clinical Hepatology 2025;41(4):722-730
ObjectiveTo investigate the effect and potential mechanism of caffeic acid (CA) on severe acute pancreatitis (SAP) induced by caerulein combined with lipopolysaccharide (LPS), and to provide a basis for the research on novel drugs for the treatment of SAP. MethodsC57BL/6J mice, aged 6 weeks, were divided into control group, model group, CA group, and octreotide acetate (OA) group, with 6 mice in each group. The mice in the control group were given injection of normal saline, and those in the other groups were given intraperitoneal injection of caerulein combined with LPS to establish a mouse model of SAP. At 1 hour after the first injection of caerulein, the mice in the CA group and the OA group were given intraperitoneal injection of CA or subcutaneous injection of OA at an interval of 8 hours. The general status of the mice was observed after 24 hours of modeling, and serum, pancreas, lung, and colon samples were collected. HE staining was used to observe the histopathological changes of the pancreas and lungs, and the serum levels of α-amylase, lipase, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), alanine aminotransferase, aspartate aminotransferase, and creatinine were measured. RT-PCR was used to measure the expression of proinflammatory factors in the pancreas and lungs; myeloperoxidase (MPO) immunohistochemistry was used to observe the degree of neutrophil infiltration; Western blot was used to measure the activation of nuclear factor-kappa B (NF-κB) and the level of citrullinated histone H3 (CitH3), a marker for the formation of neutrophil extracellular traps (NETs), in the pancreas and lungs, as well as the expression level of ZO-1 in colon tissue. A one-way analysis of variance was used for comparison of continuous data between multiple groups, and the Dunnett’s t-test was used for further comparison between two groups. ResultsCompared with the control group, the model group had severe injury in the pancreas and lungs and significant increases in the activity of serum α- amylase and lipase and the levels of the proinflammatory cytokines IL-6, interleukin-1β (IL-1β), and TNF-α in serum and lung tissue (all P<0.05), as well as significant increases in NF-κB activation, neutrophil infiltration, and the formation of NETs in the pancreas and lungs (all P<0.05). Compared with the model group, the CA group had alleviated pathological injury of the pancreas and lungs and significant reductions in the activity of serum α-amylase and the levels of the proinflammatory cytokines IL-6, IL-1β, and TNF-α in serum and lung tissue (all P<0.05), as well as significant reductions in NF-κB activation, neutrophil infiltration, and the formation of NETs in the pancreas and lungs (all P<0.05). ConclusionCA can alleviate SAP induced by caerulein combined with LPS in mice, possibly by inhibiting neutrophil recruitment and the formation of NETs.
5.Impact of Onset-to-Door Time on Endovascular Therapy for Basilar Artery Occlusion
Tianlong LIU ; Chunrong TAO ; Zhongjun CHEN ; Lihua XU ; Yuyou ZHU ; Rui LI ; Jun SUN ; Li WANG ; Chao ZHANG ; Jianlong SONG ; Xiaozhong JING ; Adnan I. QURESHI ; Mohamad ABDALKADER ; Thanh N. NGUYEN ; Raul G. NOGUEIRA ; Jeffrey L. SAVER ; Wei HU
Journal of Stroke 2025;27(1):140-143
6.Comparative Analysis of Exercise-induced Transcriptomic Responses in Human and Mouse Homologous Genes: Divergence and Convergence Based on The GEPREP Database
Qian SUN ; Wei-Chu TAO ; Ru WANG ; Bing-Xiang XU
Progress in Biochemistry and Biophysics 2025;52(6):1617-1630
Exercise, as a non-pharmacological intervention, holds a pivotal role in metabolic regulation, neuroplasticity, and immune homeostasis maintenance. However, human exercise studies are constrained by ethical limitations in tissue sampling, especially for key organs such as muscles and the brain. Meanwhile, rodent models like mice exhibit physiological differences in exercise patterns and metabolic rates from human. Despite these challenges, approximately 70% of human and mouse genes are conserved, providing a molecular basis for cross-species comparisons. This paper leverages the GEPREP database, which integrates human and mouse exercise transcriptomic data from multiple platforms, to conduct a comprehensive cross-species analysis of exercise-induced gene expression patterns. We employ a stringent data standardization process, including the conversion of orthologous genes and the filtering of low-expressing genes, to ensure the accuracy and reliability of the analysis. A mixed-effects model is utilized to assess differential gene expression across multiple cohorts, identifying genes that are significantly upregulated or downregulated in response to exercise. The analysis reveals a complex pattern of gene expression, with a significant number of genes showing conserved responses between humans and mice, particularly in acute aerobic exercise, where genes such as ATF3, PPARGC1A, and ANKRD1 are commonly upregulated. These genes are implicated in muscle stress response, metabolic regulation, and muscle adaptation, highlighting the shared molecular pathways activated by exercise across species. However, the study also uncovers substantial species-specific differences in gene expression, especially in chronic aerobic exercise, where the number of divergently regulated genes increases. These differences suggest that while some fundamental biological processes are conserved, the specific regulatory mechanisms and gene expression patterns can vary significantly between humans and mice. Functional enrichment analysis further reveals that conserved genes are involved in muscle development, inflammation regulation, and energy metabolism, while species-specific genes are associated with ion transport, extracellular matrix (ECM) organization, and muscle contraction, indicating the multifaceted impact of exercise on skeletal muscle function. The findings emphasize the importance of considering species-specific differences when interpreting results from animal models and translating them to human health applications. The study highlights the need for a more nuanced understanding of the molecular underpinnings of exercise-induced adaptations and underscores the value of cross-species comparative analyses in uncovering the evolutionary and functional basis of these responses. Future research should focus on integrating multi-omics data and expanding the analysis to include other tissues to provide a more comprehensive view of the systemic effects of exercise. Additionally, the development of species-specific gene editing models and the validation of key genes in exercise physiology will further enhance our understanding of the evolutionary logic behind exercise interventions. This study not only provides valuable insights into the molecular mechanisms of exercise-induced adaptations but also underscores the necessity of validating findings from animal models in human cohorts to ensure the reliability and applicability of translational research in exercise science. By addressing these aspects, the study aims to bridge the gap between basic research and clinical applications, ultimately contributing to the development of personalized exercise prescriptions and interventions that can effectively promote health and prevent diseases.
7.The Application of Spatial Resolved Metabolomics in Neurodegenerative Diseases
Lu-Tao XU ; Qian LI ; Shu-Lei HAN ; Huan CHEN ; Hong-Wei HOU ; Qing-Yuan HU
Progress in Biochemistry and Biophysics 2025;52(9):2346-2359
The pathogenesis of neurodegenerative diseases (NDDs) is fundamentally linked to complex and profound alterations in metabolic networks within the brain, which exhibit marked spatial heterogeneity. While conventional bulk metabolomics is powerful for detecting global metabolic shifts, it inherently lacks spatial resolution. This methodological limitation hampers the ability to interrogate critical metabolic dysregulation within discrete anatomical brain regions and specific cellular microenvironments, thereby constraining a deeper understanding of the core pathological mechanisms that initiate and drive NDDs. To address this critical gap, spatial metabolomics, with mass spectrometry imaging (MSI) at its core, has emerged as a transformative approach. It uniquely overcomes the limitations of bulk methods by enabling high-resolution, simultaneous detection and precise localization of hundreds to thousands of endogenous molecules—including primary metabolites, complex lipids, neurotransmitters, neuropeptides, and essential metal ions—directly in situ from tissue sections. This powerful capability offers an unprecedented spatial perspective for investigating the intricate and heterogeneous chemical landscape of NDD pathology, opening new avenues for discovery. Accordingly, this review provides a comprehensive overview of the field, beginning with a discussion of the technical features, optimal application scenarios, and current limitations of major MSI platforms. These include the widely adopted matrix-assisted laser desorption/ionization (MALDI)-MSI, the ultra-high-resolution technique of secondary ion mass spectrometry (SIMS)-MSI, and the ambient ionization method of desorption electrospray ionization (DESI)-MSI, along with other emerging technologies. We then highlight the pivotal applications of spatial metabolomics in NDD research, particularly its role in elucidating the profound chemical heterogeneity within distinct pathological microenvironments. These applications include mapping unique molecular signatures around amyloid β‑protein (Aβ) plaques, uncovering the metabolic consequences of neurofibrillary tangles composed of hyperphosphorylated tau protein, and characterizing the lipid and metabolite composition of Lewy bodies. Moreover, we examine how spatial metabolomics contributes to constructing detailed metabolic vulnerability maps across the brain, shedding light on the biochemical factors that render certain neuronal populations and anatomical regions selectively susceptible to degeneration while others remain resilient. Looking beyond current applications, we explore the immense potential of integrating spatial metabolomics with other advanced research methodologies. This includes its combination with three-dimensional brain organoid models to recapitulate disease-relevant metabolic processes, its linkage with multi-organ axis studies to investigate how systemic metabolic health influences neurodegeneration, and its convergence with single-cell and subcellular analyses to achieve unprecedented molecular resolution. In conclusion, this review not only summarizes the current state and critical role of spatial metabolomics in NDD research but also offers a forward-looking perspective on its transformative potential. We envision its continued impact in advancing our fundamental understanding of NDDs and accelerating translation into clinical practice—from the discovery of novel biomarkers for early diagnosis to the development of high-throughput drug screening platforms and the realization of precision medicine for individuals affected by these devastating disorders.
8.Plasma exchange and intravenous immunoglobulin prolonged the survival of a porcine kidney xenograft in a sensitized, brain-dead human recipient.
Shuaijun MA ; Ruochen QI ; Shichao HAN ; Zhengxuan LI ; Xiaoyan ZHANG ; Guohui WANG ; Kepu LIU ; Tong XU ; Yang ZHANG ; Donghui HAN ; Jingliang ZHANG ; Di WEI ; Xiaozheng FAN ; Dengke PAN ; Yanyan JIA ; Jing LI ; Zhe WANG ; Xuan ZHANG ; Zhaoxu YANG ; Kaishan TAO ; Xiaojian YANG ; Kefeng DOU ; Weijun QIN
Chinese Medical Journal 2025;138(18):2293-2307
BACKGROUND:
The primary limitation to kidney transplantation is organ shortage. Recent progress in gene editing and immunosuppressive regimens has made xenotransplantation with porcine organs a possibility. However, evidence in pig-to-human xenotransplantation remains scarce, and antibody-mediated rejection (AMR) is a major obstacle to clinical applications of xenotransplantation.
METHODS:
We conducted a kidney xenotransplantation in a brain-dead human recipient using a porcine kidney with five gene edits (5GE) on March 25, 2024 at Xijing Hospital, China. Clinical-grade immunosuppressive regimens were employed, and the observation period lasted 22 days. We collected and analyzed the xenograft function, ultrasound findings, sequential protocol biopsies, and immune surveillance of the recipient during the observation.
RESULTS:
The combination of 5GE in the porcine kidney and clinical-grade immunosuppressive regimens prevented hyperacute rejection. The xenograft kidney underwent delayed graft function in the first week, but urine output increased later and the single xenograft kidney maintained electrolyte and pH homeostasis from postoperative day (POD) 12 to 19. We observed AMR at 24 h post-transplantation, due to the presence of pre-existing anti-porcine antibodies and cytotoxicity before transplantation; this AMR persisted throughout the observation period. Plasma exchange and intravenous immunoglobulin treatment mitigated the AMR. We observed activation of latent porcine cytomegalovirus toward the end of the study, which might have contributed to coagulation disorder in the recipient.
CONCLUSIONS
5GE and clinical-grade immunosuppressive regimens were sufficient to prevent hyperacute rejection during pig-to-human kidney xenotransplantation. Pre-existing anti-porcine antibodies predisposed the xenograft to AMR. Plasma exchange and intravenous immunoglobulin were safe and effective in the treatment of AMR after kidney xenotransplantation.
Transplantation, Heterologous/methods*
;
Kidney Transplantation/methods*
;
Heterografts/pathology*
;
Immunoglobulins, Intravenous/administration & dosage*
;
Graft Survival/immunology*
;
Humans
;
Animals
;
Sus scrofa
;
Graft Rejection/prevention & control*
;
Kidney/pathology*
;
Gene Editing
;
Species Specificity
;
Immunosuppression Therapy/methods*
;
Plasma Exchange
;
Brain Death
;
Biopsy
;
Male
;
Aged
9.Guidelines for the diagnosis and treatment of prurigo nodularis.
Li ZHANG ; Qingchun DIAO ; Xia DOU ; Hong FANG ; Songmei GENG ; Hao GUO ; Yaolong CHEN ; Chao JI ; Chengxin LI ; Linfeng LI ; Jie LI ; Jingyi LI ; Wei LI ; Zhiming LI ; Yunsheng LIANG ; Jianjun QIAO ; Zhiqiang SONG ; Qing SUN ; Juan TAO ; Fang WANG ; Zhiqiang XIE ; Jinhua XU ; Suling XU ; Hongwei YAN ; Xu YAO ; Jianzhong ZHANG ; Litao ZHANG ; Gang ZHU ; Fei HAO ; Xinghua GAO
Chinese Medical Journal 2025;138(22):2859-2861
10.Identification and functional analysis of β-amyrin synthase gene in Dipsacus asper.
Huan LEI ; Hua HE ; Jiao XU ; Chang-Gui YANG ; Wei-Ke JIANG ; Tao ZHOU ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2025;50(4):1043-1050
Dipsaci Radix is a commonly used Chinese herbal medicine in China, with triterpenoid saponins as the main active components. β-Amyrin synthase, a member of the oxidosqualene cyclase superfamily, plays a crucial role in the biosynthesis of oleanane-type triterpenoid saponins. Asperosaponin Ⅵ is an oleanane-type triterpenoid saponin. To explore the β-amyrin synthase genes involved in the biosynthesis of asperosaponin Ⅵ in Dipsacus asper, this study screened the candidate genes from the transcriptome data of D. asper. Two β-amyrin synthase genes, Da OSC1 and Da OSC2, were identified by phylogenetic analysis and correlation analysis. The coding sequences of Da OSC1 and Da OSC2 were 2 286 bp and 2 295 bp in length, encoding 761 and 764 amino acids,respectively. Multiple sequence alignments showed that Da OSC1 and Da OSC2 had three conserved motifs( DCTAE, QW, and MWCYCR) unique to the oxidosqualene cyclase family. Real-time quantitative PCR results showed that Da OSC1 and Da OSC2 had the highest expression levels in the roots. Compared with normal growth conditions, the low-temperature treatment significantly upregulated the expression of Da OSC1 and Da OSC2. Agrobacterium-mediated transient expression of Da OSC1 and Da OSC2 in Nicotiana benthamiana resulted in the production of β-amyrin, which suggested that Da OSC1 and Da OSC2 were able to catalyze the synthesis of β-amyrin. This study clarified the catalytic functions of two β-amyrin synthases in D. asper, analyzed their expression patterns in different tissue and at low temperatures. The findings provide a foundation for further studying the biosynthetic pathway and regulatory mechanism of asperosaponin Ⅵ in D. asper.
Intramolecular Transferases/chemistry*
;
Phylogeny
;
Plant Proteins/chemistry*
;
Gene Expression Regulation, Plant
;
Dipsacaceae/classification*
;
Saponins/metabolism*
;
Oleanolic Acid/metabolism*

Result Analysis
Print
Save
E-mail