1.Exploring Chemical Constituent Distribution in Blood/Brain(Hippocampus) and Emotional Regulatory Effect of Raw and Vinegar-processed Products of Citri Reticulatae Pericarpium Viride
Yi BAO ; Yonggui SONG ; Qianmin LI ; Zhifu AI ; Genhua ZHU ; Ming YANG ; Huanhua XU ; Qin ZHENG ; Yiting HUANG ; Zihan GAO ; Dan SU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):189-197
ObjectiveTo investigate the migration and distribution characteristics of chemical constituents in blood and hippocampal tissues before and after vinegar processing of Citri Reticulatae Pericarpium Viride(CRPV), and to explore the potential material basis and mechanisms underlying their regulatory effects on emotional disorders by comparing the effects of raw and vinegar-processed products of CRPV. MethodsUltra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) was employed to characterize and identify the chemical constituents of raw and vinegar-processed products of CRPV extracts, as well as their migrating components in blood and hippocampal tissues after oral administration. Reference standards, databases, and relevant literature were utilized for compound annotation, with data processing performed using PeakView 1.2 software. Seventy male C57BL/6 mice were randomly divided into seven groups, including the blank group, model group, diazepam group(2.5 mg·kg-1), raw CRPV low/high dose groups(0.6, 1.2 g·kg-1), and vinegar-processed CRPV low/high dose groups(0.6, 1.2 g·kg-1), with 10 mice per group. Except for the blank group, all other groups underwent chronic restraint stress(2 h·d-1) for 20 d. Each drug-treated group received oral administration at the predetermined dose starting 10 d after modeling, with a total treatment duration of 10 d. Following model-based drug administration, mice underwent open-field, forced swimming, and elevated plus maze tests. After anesthesia with isoflurane, whole brains were collected from each group of mice, and hippocampi were dissected. Reactive oxygen species(ROS) level in hippocampal tissues was quantified by enzyme-linked immunosorbent assay(ELISA). Hematoxylin-eosin(HE) staining was used to observe hippocampal tissue morphology. Immunofluorescence was performed to detect neuronal nuclei(NeuN) and peroxisome proliferator-activated receptor alpha(PPARα) expressions in hippocampal tissue. Then, pharmacodynamic evaluations were conducted to assess the effects of raw and vinegar-processed CRPV on mood disorders, exploring the potential mechanisms. ResultsVinegar processing caused significant changes in the chemical composition of CRPV, with 18 components showing increased relative content and 35 components showing decreased relative content. The primary changes occurred in flavonoid compounds, including 20 flavonoids, 20 flavonoid glycosides, 3 triterpenes, 3 phenolic acids, 1 alkaloid, and 6 other compounds. Twenty-one components were detected in blood(15 methoxyflavones, 4 flavonoid glycosides, and 2 phenolic acids), with 17 shared between raw and vinegar-processed CRPV. Seven components reached hippocampal tissues(all common to both forms). In regulating emotional disorders, Vinegar-processed CRPV exhibited superior antidepressant-like effects compared to raw products. HE staining revealed that both treatments improved hippocampal neuronal morphology, particularly in the damaged CA1 and CA3 regions. Immunofluorescence and ELISA analyses demonstrated that both raw and vinegar-processed CRPV significantly modulated NeuN and PPARα expressions in hippocampal tissue while alleviating oxidative stress induced by excessive ROS(P<0.05). ConclusionThe chemical composition of CRPV undergoes changes after vinegar processing, but the migrating components in blood and hippocampus are primarily methoxyflavonoids. These components may serve as the potential material basis for activating the PPARα pathway, thereby negatively regulating ROS generation in the hippocampus, reducing oxidative stress, and promoting the development of NeuN-positive neurons. These findings provide experimental evidence for enhancing quality standards, pharmacodynamic material research, and active drug development of raw and vinegar-processed CRPV.
2.Exploration in Mechanism of Sini San for Inhibiting Ferroptosis and Ameliorating Isoprenaline-induced Myocardial Infarction in Mice Based on Bioinformatics and Experimental Validation
Shupeng LIU ; Zhiguang HAN ; Jiaying LI ; Jiayao XU ; Weihao GAO ; Yanping WU ; Guangguo BAN ; Yongmin LI ; Hongxia YANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):67-77
ObjectiveTo explore the mechanism by which Sini San (SNS) inhibits ferroptosis, alleviates inflammation and myocardial injury, and improves myocardial infarction (MI). MethodsThe active ingredients of SNS were obtained by searching the Traditional Chinese Medicine System Pharmacology Platform (TCMSP) database, its target sites were predicted using the SwissTargetPrediction Database, and the core components were screened out using the CytoNCA plug-in. The targets of MI and ferroptosis were obtained by using GeneCards, Online Mendelian Inheritance in Man (OMIM) database, DrugBank, Therapeutic Target Database (TTD), FerrDb database and literature review, respectively. The intersection of these targets of SNS-MI-ferroptosis was plotted as a Venn diagram. The protein-protein interaction (PPI) network was constructed using the STRING database, and the visualization graph was prepared using Cytoscape. The core targets were screened out using the CytoNCA plug-in, and the biological functions were clustered by the MCODE plug-in. Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using the David database. Molecular docking was performed using AutoDock and visualized with PyMOL2.5.2. The Kunming mice were randomly divided into the control group, the model group, the SNS group, and the trimetazidine (TMZ) group. The mice were subcutaneously injected with isoprenaline (ISO, 5 mg·kg-1·d-1) to establish an MI model. The drug was continuously intervened for 7 days. The ST-segment changes were recorded by electrocardiogram (ECG), and the tissue morphology changes were observed by hematoxylin-eosin (HE) staining. Cardiomyocyte ferroptosis was investigated by transmission electron microscopy. Serum creatine kinase (CK), creatine kinase isoenzyme (CK-MB), lactate dehydrogenase (LDH), reduced glutathione (GSH), and malondialdehyde (MDA) levels were detected by biochemical assay. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum levels of interleukin (IL)-6 and 4-hydroxynonenal (4-HNE). Immunohistochemical staining was employed to detect IL-6 and phosphorylated signal transducer and transcription activator 3 (p-STAT3) in cardiac tissues. Western blot was used to detect STAT3 and p-STAT3 in cardiac tissues. Real-time PCR was used to detect the levels of IL-6, IL-18, solute carrier family 7 member 11 (SLC7A11), arachidonic acid 15-lipoxygenase (ALOX15), and glutathione peroxidase 4 (GPx4) in cardiac tissues. ResultsA total of 121 active ingredients of SNS were obtained, and 58 potential targets of SNS in the treatment of MI by regulating ferroptosis were screened. The three protein modules with a score5 were mainly related to the inflammatory response. The GO function was mainly related to inflammation, and KEGG enrichment analysis showed that SNS mainly regulated ferroptosis- and inflammation- related signaling pathways. Molecular docking indicated that the core component had a higher binding force to the target site. Animal experiments confirmed that SNS reduced the level of p-STAT3 (P0.01), down-regulated the expression of ALOX15 mRNA (P0.01), up-regulated the level of serum GSH, and the expressions of SLC7A11 and GPx4 mRNA, reduced MDA and 4-HNE levels (P0.05, P0.01). Additionally, SNS improved the mitochondrial injury induced by cardiomyocyte ferroptosis, reduced the area of MI, alleviated inflammation and myocardial injury, lowered the levels of serum CK, CK-MB, LDH, IL-6, and the mRNA expression levels of IL-16 and IL-18 (P0.05), and improved ST segment elevation. ConclusionSNS can reduce ISO-induced STAT3 phosphorylation levels, inhibit ferroptosis in cardiomyocytes, alleviate inflammation and myocardial injury, thereby improving MI.
3.Exploration in Mechanism of Sini San for Inhibiting Ferroptosis and Ameliorating Isoprenaline-induced Myocardial Infarction in Mice Based on Bioinformatics and Experimental Validation
Shupeng LIU ; Zhiguang HAN ; Jiaying LI ; Jiayao XU ; Weihao GAO ; Yanping WU ; Guangguo BAN ; Yongmin LI ; Hongxia YANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):67-77
ObjectiveTo explore the mechanism by which Sini San (SNS) inhibits ferroptosis, alleviates inflammation and myocardial injury, and improves myocardial infarction (MI). MethodsThe active ingredients of SNS were obtained by searching the Traditional Chinese Medicine System Pharmacology Platform (TCMSP) database, its target sites were predicted using the SwissTargetPrediction Database, and the core components were screened out using the CytoNCA plug-in. The targets of MI and ferroptosis were obtained by using GeneCards, Online Mendelian Inheritance in Man (OMIM) database, DrugBank, Therapeutic Target Database (TTD), FerrDb database and literature review, respectively. The intersection of these targets of SNS-MI-ferroptosis was plotted as a Venn diagram. The protein-protein interaction (PPI) network was constructed using the STRING database, and the visualization graph was prepared using Cytoscape. The core targets were screened out using the CytoNCA plug-in, and the biological functions were clustered by the MCODE plug-in. Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using the David database. Molecular docking was performed using AutoDock and visualized with PyMOL2.5.2. The Kunming mice were randomly divided into the control group, the model group, the SNS group, and the trimetazidine (TMZ) group. The mice were subcutaneously injected with isoprenaline (ISO, 5 mg·kg-1·d-1) to establish an MI model. The drug was continuously intervened for 7 days. The ST-segment changes were recorded by electrocardiogram (ECG), and the tissue morphology changes were observed by hematoxylin-eosin (HE) staining. Cardiomyocyte ferroptosis was investigated by transmission electron microscopy. Serum creatine kinase (CK), creatine kinase isoenzyme (CK-MB), lactate dehydrogenase (LDH), reduced glutathione (GSH), and malondialdehyde (MDA) levels were detected by biochemical assay. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum levels of interleukin (IL)-6 and 4-hydroxynonenal (4-HNE). Immunohistochemical staining was employed to detect IL-6 and phosphorylated signal transducer and transcription activator 3 (p-STAT3) in cardiac tissues. Western blot was used to detect STAT3 and p-STAT3 in cardiac tissues. Real-time PCR was used to detect the levels of IL-6, IL-18, solute carrier family 7 member 11 (SLC7A11), arachidonic acid 15-lipoxygenase (ALOX15), and glutathione peroxidase 4 (GPx4) in cardiac tissues. ResultsA total of 121 active ingredients of SNS were obtained, and 58 potential targets of SNS in the treatment of MI by regulating ferroptosis were screened. The three protein modules with a score5 were mainly related to the inflammatory response. The GO function was mainly related to inflammation, and KEGG enrichment analysis showed that SNS mainly regulated ferroptosis- and inflammation- related signaling pathways. Molecular docking indicated that the core component had a higher binding force to the target site. Animal experiments confirmed that SNS reduced the level of p-STAT3 (P0.01), down-regulated the expression of ALOX15 mRNA (P0.01), up-regulated the level of serum GSH, and the expressions of SLC7A11 and GPx4 mRNA, reduced MDA and 4-HNE levels (P0.05, P0.01). Additionally, SNS improved the mitochondrial injury induced by cardiomyocyte ferroptosis, reduced the area of MI, alleviated inflammation and myocardial injury, lowered the levels of serum CK, CK-MB, LDH, IL-6, and the mRNA expression levels of IL-16 and IL-18 (P0.05), and improved ST segment elevation. ConclusionSNS can reduce ISO-induced STAT3 phosphorylation levels, inhibit ferroptosis in cardiomyocytes, alleviate inflammation and myocardial injury, thereby improving MI.
4.Research progress on the relationship between early life obesogen exposure and childhood obesity
GAO Lei ; YE Zhen ; WANG Wei ; ZHAO Dong ; XU Peiwei ; ZHANG Ronghua
Journal of Preventive Medicine 2026;38(1):48-54
Childhood obesity has become a global public health issue. Current research indicates that early life obesogen exposure has emerged as a significant risk factor for childhood obesity. While obesogens have been confirmed to influence the development and progression of childhood obesity through mechanisms such as endocrine disruption and epigenetic programming, controversies remain regarding the establishment of causal relationships, assessment of combined exposures, and validation of transgenerational effects in humans. In recent years, novel approaches including multi-omics technologies, exposome-based analysis, and multigenerational cohort studies have integrated dynamic biomarker monitoring with analyses of social-environmental interactions, offering new perspectives and methodologies for constructing a systematic "exposure-mechanism-outcome" research framework. This article reviews literature from PubMed and Web of Science up to August 2025 on the association between early life obesogen exposure and childhood obesity, summarizing evidence on the health effects of early life obesogen exposure, major exposure pathways and internal exposure assessment, interactions and amplifying effects of social and environmental factors, as well as the biological mechanisms underlying obesogen action. It further examines current research frontiers and challenges, aiming to provide a theoretical foundation for early prevention and precision intervention of childhood obesity.
5.Compound Xishu Granules Inhibit Proliferation of Hepatocellular Carcinoma Cells by Regulating Ferroptosis
Yuan TIAN ; Yuxi WANG ; Zhen LIU ; Yuncheng MA ; Hongyu ZHU ; Xiaozhu WANG ; Qian LI ; Jian GAO ; Weiling WANG ; Wenhui XU ; Ting WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):37-45
ObjectiveTo study the mechanism of compound Xishu granules (CXG) in inhibiting the proliferation of hepatocellular carcinoma cells by regulating ferroptosis. MethodsThe transplanted tumor model of human Huh7 was established with nude mice and the successfully modeled mice were randomized into model, Fufang Banmao (0.21 g·kg-1), low-dose (1.87 g·kg-1) CXG, medium-dose (3.74 g·kg-1) CXG, and high-dose (7.49 g·kg-1) CXG groups. Mice were administrated with drinking water or CXG for 28 days, and the body weight and tumor volume were measured every 4 days. Hematoxylin-eosin staining was employed to observe the histopathological changes of tumors. The cell-counting kit-8 (CCK-8) was used to examine the survival rate of Huh7 cells treated with different concentrations (0, 31.25, 62.5, 125, 250, 500, 1 000 mg·L-1) of CXG for 24 h and 48 h. CA-AM, DCFH-DA, and C11-BODIPY581/591 fluorescent probes were used to determine the intracellular levels of ferrous ion (Fe2+), reactive oxygen species (ROS), and lipid peroxide (LPO), respectively. The colorimetric method was employed to measure the levels of glutathione (GSH) and superoxide dismutase (SOD). Western blot was employed to determine the protein levels of glutathione peroxidase 4 (GPX4), transferrin receptor 1 (TFR1), and ferritin heavy chain 1 (FTH1), respectively. ResultsIn the animal experiment, compared with the model group, the drug treatment groups showed reductions in the tumor volume from day 12 (P<0.01). After treatment, the Fufang Banmao and low-, medium-, and high-dose CXG groups had lower tumor volume, relative tumor volume, and tumor weight than the model group (P<0.05), with tumor inhibition rates of 48.99%, 79.93%, 91.38%, and 97.36%, respectively. Moreover, the CXG groups had lower tumor volume and relative tumor volume (P<0.05 in all the three dose groups) and lower tumor weight (P<0.05 in medium-dose and high-dose groups) than the Fufang Banmao group. Compared with the model group, the drug treatment groups showed reduced number of tumor cells, necrotic foci with karyopyknosis, nuclear fragmentation, and nucleolysis, and the high-dose CXG group showed an increase in the proportion of interstitial fibroblasts. In the cell experiment, compared with the blank group, CXG reduced the survival rate of Huh7 cells in a dose-dependent manner after incubation for 24 h and 48 h (P<0.05). Compared with the blank group, the RSL3 group and the low-, medium-, and high-dose CXG groups showed a decrease in the relative fluorescence intensity of CA-AM and increases in the fluorescence intensity of DCFH-DA and fluorescence ratio of C11-BODIPY581/591, which indicated elevations in the levels of Fe2+ (P<0.01), ROS (P<0.05), and LPO (P<0.01), respectively. Compared with the blank group, the RSL3 and low-, medium-, and high-dose CXG groups showed lowered levels of GSH and SOD (P<0.05). In addition, the RSL3 group and the medium- and high-dose CXG groups showed down-regulated expression of GPX4 and FTH1 (P<0.05), and the low- and high-dose CXG groups presented up-regulated expression of TFR1 (P<0.05). ConclusionCXG suppresses the proliferation of hepatocellular carcinoma cells by inducing ferroptosis via downregulating the GSH-GPX4 signaling axis and increasing intracellular Fe2+and LPO levels.
6.Effects of Shenfuhuang Formula (参附黄配方) on Potential Targets of Action in the Brain Tissue of Sepsis Model Mice:Transcriptomics-Based Exploration
Yuchen WANG ; Xuerui WANG ; Xiaolong XU ; Jingxia ZHAO ; Jiabo WANG ; Yuan GAO ; Weijun KONG ; Qingquan LIU
Journal of Traditional Chinese Medicine 2025;66(1):65-70
ObjectiveTo investigate the possible mechanism of Shenfuhuang Formula (参附黄配方) in prevention and treatment of epsis-associated encephalopathy from the perspective of brain genomics. MethodsC57BL/6 mice were randomly divided into sham surgery group, sepsis group, and Shenfuhuang group, with 20 mice in each group. The sepsis group and Shenfuhuang group were induced to develop sepsis by cecal ligation and puncture (CLP) procedure. At 4 hours after modelling, Shenfuhuang group were gavaged with 2.5 g/(kg·d) of Shenfuhuang Formula, 0.5 ml each time, at 12 hours intervals, for a total of 4 times after modelling. Sepsis group and sham surgery group were given 0.5 ml of purified water orally. At 48 hours after modeling, the transcriptome sequencing was used to explore the differential gene expression in the effects of Shenfuhuang Formula on the brain regions of septic mice, and real-time PCR and ELISA were later used to further validate the differential gene and proteins expression. ResultsA total of 4605 genes were differentially expressed in Shenfuhuang group compared with sepsis group, of which 2353 genes were up-regulated and 2252 genes were down-regulated. According to the results of previous publications, six key genes were screened, including serine/threonine-protein kinase (Nek1), myelin-associated glycoprotein (Mag), endothelial cell-specific tyrosine kinase receptor (Tek), a disintegrin and metalloproteinase with thrombospondin motifs 20 (Adamts20), lymphocyte antigen 86 (Ly86), and E3 ubiquitin-protein ligase (Traip). Further genetic and protein validation revealed that, compared to the sham surgery group, the mRNA levels and corresponding protein levels of Nek1, Mag, Tek, Adamts20, Ly86, and Traip in the brain tissue of septic mice significantly reduced (P<0.05). In comparison to the sepsis group, Shenfuhuang group showed significantly increased mRNA levels and corresponding protein levels of Nek1, Mag, Tek, Adamts20, Ly86, and Traip (P<0.05). ConclusionThe potential therapeutic targets of Shenfuhuang Formula for treating sepsis-associated encephalopathy may be related to the Nek1, Mag, Tek, Adamts20, Ly86, and Traip genes and their encoded proteins.
7.Anti-frostbite effect of miglitol on cold-exposed mice through UCP1-mediated thermogenic activation
Xiang LI ; Hongyuan LU ; Mingyu ZHANG ; Huan GAO ; Dong YAO ; Zihua XU
Journal of Pharmaceutical Practice and Service 2025;43(1):1-5
Objective To investigate the effect and mechanism of miglitol on regulating the energy metabolism of brown adipocytes by activating UCP1 and preventing cold injury in mice after cold exposure. Methods Primary brown adipocytes were induced into mature adipocytes, the effect of miglitol on the viability of brown adipocytes was investigated by MTT method, the lipid droplet consumption level of cells after drug administration was investigated by Oil Red O staining technology, and the level of UCP1, a key protein of thermogenesis in brown adipocytes, was detected by Western blotting. The activity of anti-frostbite was investigated in cold exposure at 4 ℃ and −20 ℃. KM mice, which were randomly divided into control group, cold exposure group, miglitol group and all-trans retinoic acid group, and after 7 days of repeated administration, the body surface temperature of mice was detected by infrared thermal imaging system, the anal temperature change was detected by anal thermometer, and the expression levels of UCP1 and PGC1-α in adipose tissue were detected by immunoblotting. Results Compared with the control group, the lipid droplet consumption and UCP1 expression levels in brown adipocytes in the miglitol group were significantly increased. The levels of body surface temperature and rectal temperature increased significantly after cold exposure, and the levels of UCP1 and PGC1α in the brown adipose tissue of mice increased significantly, which indicated that the miglitol could activate the critical proteins UCP1 and PGC1α of the thermogenesis pathway, increase the thermogenesis of mice after cold exposure, and thus improve the effect of cold injury for toe swelling. Conclusion Miglitol could play a role in improving cold injury and body temperature in mice by increasing the level of UCP1 and PGC1α, which are key targets of the thermogenesis pathway to promote the thermogenesis of brown fat.
8.Study on the efficacy and mechanism of Tongbianling capsule in the treatment of constipation
Ying CHEN ; Zihua XU ; Bei HU ; Yaling CUI ; Huan GAO ; Qiong WU
Journal of Pharmaceutical Practice and Service 2025;43(1):10-16
Object To study the efficacy and potential mechanism of Tongbianling capsule in constipation. Methods The effects of Tongbianling capsule on intestinal motility in normal mice and carbon powder propulsion rate in small intestine of constipation model mice after were observed administration. The potential targets and key pathways of Tongbianling capsule in treating constipation were identified through network pharmacology. To verify the mechanism, the expression of p-PI3K/PI3K, p-AKT/AKT and CASP3 proteins in mouse colon tissue was detected by the western blot. Results The time for mice to excrete the first black stool was shortened and the number of fecal particles was increased in Tongbianling capsule administration group, and the carbon powder propulsion rate of mice in each Tongbianling capsule administration group was increased. The results of network pharmacology showed that treatment of constipation by Tongbianling capsule may be related to signaling pathways such as PI3K-Akt signaling pathway and 5-HT. The protein expression of p-PI3K/PI3K, p-AKT/AKT, and CASP3 in mouse colon tissue could be significantly downregulated in administration group. Conclusion Tongbianling capsule could effectively promote intestinal peristalsis in mice, increase the frequency of defecation, and effectively treat constipation. The mechanism of its action may be related to the direct or indirect regulation of intestinal motility by the PI3K-Akt signaling pathway.
9.Research on the chemical induction scheme for functional insulin producing cell
Yiwen LI ; Jibing CHEN ; Weiping LIANG ; Hongjun GAO ; Zhiran XU
Organ Transplantation 2025;16(3):435-442
Objective To explore the effective induction scheme for differentiation of adipose-derived mesenchymal stem cell (ADMSC) to insulin producing cell (IPC). Methods Different schemes of small molecule compound were used to induce the differentiation of ADMSC. The purity of cells was analyzed by flow cytometry and the morphological changes of cells were observed under the microscope. The quality, performance and insulin related indicators of cells were detected by hematoxylin-eosin and immunohistochemical staining. The maturity and activity of cells were detected by dithizone (DTZ) and diacetylfluorescein/propidium iodide staining. The induction effect of ADMSC differentiated into IPC was analyzed. Results The purity of ADMSC reached more than 99%, and the sphere forming properties of schemes Ⅰ, Ⅱ and Ⅲ were good. Cell induction mass, the expression effects of pancreatic and duodenal homeobox 1 (PDX1), musculoaponeurotic fibrosarcoma oncogene homolog A (MAFA) and insulin and C peptide of schemes Ⅰ were both better than those of other schemes. The DTZ staining depth may be related to IPC maturity, among which the number of apoptotic cells in scheme Ⅰ was significantly less than that of scheme Ⅱ and Ⅲ. Conclusions Induction scheme Ⅰ may improve the differentiation efficiency of ADMSC to IPC and lay a certain foundation for future clinical IPC transplantation applications.
10.Exploring the mechanism and treatment principles of testicular radiation injury from the perspective of "the struggle between vital qi and pathogen" theory
Xiaoying CHEN ; An WANG ; Yifan YE ; Yan WANG ; Yuankai GAO ; Qing XU ; Shuran WANG ; Zhangdi ZHAO ; Sumin HU
Journal of Beijing University of Traditional Chinese Medicine 2025;48(3):379-385
Testicular radiation injury is a structural and functional abnormality of the testes caused directly or indirectly by radiation, which disrupts spermatogenesis and compromises male fertility. The development of effective preventive and therapeutic interventions is essential because of the high prevalence of this condition in clinical settings and its profound effect on patients′ reproductive health and overall well-being. The concept of "the struggle between vital qi and pathogen" is first seen in the Treatise on Cold Pathogenic Diseases. It denotes the dynamic struggle between vital and pathogenic qi. The occurrence, development, and sequelae of all diseases reflect this ongoing conflict. In this context, this study defines the "vital qi" of the testis as its capacity to generate and preserve the essence of reproduction and to resist damage. The pathogenic qi associated with testicular radiation injury is categorized into two types: ionizing poison and retaining evil. The pathogenesis of testicular radiation damage is delineated into three stages by integrating the characteristics of vital and pathogenic qi: the injury, adhesion, and recovery phases. Based on the theoretical framework advanced by this study, the therapeutic approach for testicular radiation injury should adhere to the fundamental principle of strengthening vital qi and eliminating pathogenic factors. Although the primary focus of treatment should be on strengthening vital qi, it should also be complemented by strategies to eliminate pathogenic influences. This paper aims to provide a novel perspective and strategic approach to the traditional Chinese medicine diagnosis, prevention, and treatment of testicular radiation injury. By elucidating the process of testicular radiation injury and its corresponding treatment principles, it seeks to offer valuable insights for clinical practice.


Result Analysis
Print
Save
E-mail