1.Analysis of Common Causes of Out-of-Specification Results in the Test for Depressor Substances
Xiyang TONG ; Changtian QUE ; Feng ZHANG ; Lu ZHAO ; Hongping WANG
Laboratory Animal and Comparative Medicine 2025;45(3):331-339
According to General Chapter 1145 of Division IV in the Chinese Pharmacopoeia (2020 Edition), the test for depressor substances is a common method for drug testing. It determines whether the level of depressor substances in a test sample complies with the specified standards by comparing the extent of blood pressure reduction in anesthetized cats induced by the histamine reference substance and the test sample. If an out-of-specification (OOS) result occurs in the test for depressor substances, it may be caused by inherent quality issues of the drug or errors in the testing process. Therefore, analyzing the causes of OOS is particularly important for confirming the test results and evaluating drug quality. Cats are used as experimental animals in the test for depressor substances. Compared with conventional laboratory animals, they are less stable, surgery procedures are more challenging, and the testing process is more complex. These factors make it more difficult to investigate the causes of OOS in this test. Based on a review of the literature and practical work experience, this article analyzes the causes of OOS in the test for depressor substances from the following five aspects: (1) an analysis of the impact of drug standards on OOS from three aspects: standard determination, standard content, and standard drafting; (2) personnel qualifications, including pre-employment training, compliance with standard operating procedures during experimental operations, and the ability to operate instruments; (3) factors related to cats, used as experimental animals in the test for depressor substances, including physiological characteristics, genetic background, and abnormal conditions during the experiment; (4) reference substances, reagents, test samples, and key instruments such as the multi-channel physiological signal instrument; (5) experimental operations including animal anesthesia, arterial and venous catheterization, drug administration, and data processing. This article aims to provide reference approaches for professionals engaged in the testing of pharmaceuticals and biological products when analyzing the causes of OOS in the test for depressor substances.
2.Analysis of Common Causes of Out-of-Specification Results in the Test for Depressor Substances
Xiyang TONG ; Changtian QUE ; Feng ZHANG ; Lu ZHAO ; Hongping WANG
Laboratory Animal and Comparative Medicine 2025;45(3):331-339
According to General Chapter 1145 of Division IV in the Chinese Pharmacopoeia (2020 Edition), the test for depressor substances is a common method for drug testing. It determines whether the level of depressor substances in a test sample complies with the specified standards by comparing the extent of blood pressure reduction in anesthetized cats induced by the histamine reference substance and the test sample. If an out-of-specification (OOS) result occurs in the test for depressor substances, it may be caused by inherent quality issues of the drug or errors in the testing process. Therefore, analyzing the causes of OOS is particularly important for confirming the test results and evaluating drug quality. Cats are used as experimental animals in the test for depressor substances. Compared with conventional laboratory animals, they are less stable, surgery procedures are more challenging, and the testing process is more complex. These factors make it more difficult to investigate the causes of OOS in this test. Based on a review of the literature and practical work experience, this article analyzes the causes of OOS in the test for depressor substances from the following five aspects: (1) an analysis of the impact of drug standards on OOS from three aspects: standard determination, standard content, and standard drafting; (2) personnel qualifications, including pre-employment training, compliance with standard operating procedures during experimental operations, and the ability to operate instruments; (3) factors related to cats, used as experimental animals in the test for depressor substances, including physiological characteristics, genetic background, and abnormal conditions during the experiment; (4) reference substances, reagents, test samples, and key instruments such as the multi-channel physiological signal instrument; (5) experimental operations including animal anesthesia, arterial and venous catheterization, drug administration, and data processing. This article aims to provide reference approaches for professionals engaged in the testing of pharmaceuticals and biological products when analyzing the causes of OOS in the test for depressor substances.
3.Palmitoylated SARM1 targeting P4HA1 promotes collagen deposition and myocardial fibrosis: A new target for anti-myocardial fibrosis.
Xuewen YANG ; Yanwei ZHANG ; Xiaoping LENG ; Yanying WANG ; Manyu GONG ; Dongping LIU ; Haodong LI ; Zhiyuan DU ; Zhuo WANG ; Lina XUAN ; Ting ZHANG ; Han SUN ; Xiyang ZHANG ; Jie LIU ; Tong LIU ; Tiantian GONG ; Zhengyang LI ; Shengqi LIANG ; Lihua SUN ; Lei JIAO ; Baofeng YANG ; Ying ZHANG
Acta Pharmaceutica Sinica B 2025;15(9):4789-4806
Myocardial fibrosis is a serious cause of heart failure and even sudden cardiac death. However, the mechanisms underlying myocardial ischemia-induced cardiac fibrosis remain unclear. Here, we identified that the expression of sterile alpha and TIR motif containing 1 (SARM1), was increased significantly in the ischemic cardiomyopathy patients, dilated cardiomyopathy patients (GSE116250) and fibrotic heart tissues of mice. Additionally, inhibition or knockdown of SARM1 can improve myocardial fibrosis and cardiac function of myocardial infarction (MI) mice. Moreover, SARM1 fibroblasts-specific knock-in mice had increased deposition of extracellular matrix and impaired cardiac function. Mechanically, elevated expression of SARM1 promotes the deposition of extracellular matrix by directly modulating P4HA1. Notably, by using the Click-iT reaction, we identified that the increased expression of ZDHHC17 promotes the palmitoylation levels of SARM1, thereby accelerating the fibrosis process. Based on the fibrosis-promoting effect of SARM1, we screened several drugs with anti-myocardial fibrosis activity. In conclusion, we have unveiled that palmitoylated SARM1 targeting P4HA1 promotes collagen deposition and myocardial fibrosis. Inhibition of SARM1 is a potential strategy for the treatment of myocardial fibrosis. The sites where SARM1 interacts with P4HA1 and the palmitoylation modification sites of SARM1 may be the active targets for anti-fibrosis drugs.

Result Analysis
Print
Save
E-mail