1.Diagnostic Techniques and Risk Prediction for Cardiovascular-kidney-metabolic (CKM) Syndrome
Song HOU ; Lin-Shan ZHANG ; Xiu-Qin HONG ; Chi ZHANG ; Ying LIU ; Cai-Li ZHANG ; Yan ZHU ; Hai-Jun LIN ; Fu ZHANG ; Yu-Xiang YANG
Progress in Biochemistry and Biophysics 2025;52(10):2585-2601
Cardiovascular disease (CVD), chronic kidney disease (CKD), and metabolic disorders are the 3 major chronic diseases threatening human health, which are closely related and often coexist, significantly increasing the difficulty of disease management. In response, the American Heart Association (AHA) proposed a novel disease concept of “cardiovascular-kidney-metabolic (CKM) syndrome” in October 2023, which has triggered widespread concern about the co-treatment of heart and kidney diseases and the prevention and treatment of metabolic disorders around the world. This review posits that effectively managing CKM syndrome requires a new and multidimensional paradigm for diagnosis and risk prediction that integrates biological insights, advanced technology and social determinants of health (SDoH). We argue that the core pathological driver is a “metabolic toxic environment”, fueled by adipose tissue dysfunction and characterized by a vicious cycle of systemic inflammation and oxidative stress, which forms a common pathway to multi-organ injury. The at-risk population is defined not only by biological characteristics but also significantly impacted by adverse SDoH, which can elevate the risk of advanced CKM by a factor of 1.18 to 3.50, underscoring the critical need for equity in screening and care strategies. This review systematically charts the progression of diagnostic technologies. In diagnostics, we highlight a crucial shift from single-marker assessments to comprehensive multi-marker panels. The synergistic application of traditional biomarkers like NT-proBNP (reflecting cardiac stress) and UACR (indicating kidney damage) with emerging indicators such as systemic immune-inflammation index (SII) and Klotho protein facilitates a holistic evaluation of multi-organ health. Furthermore, this paper explores the pivotal role of non-invasive monitoring technologies in detecting subclinical disease. Techniques like multi-wavelength photoplethysmography (PPG) and impedance cardiography (ICG) provide a real-time window into microcirculatory and hemodynamic status, enabling the identification of early, often asymptomatic, functional abnormalities that precede overt organ failure. In imaging, progress is marked by a move towards precise, quantitative evaluation, exemplified by artificial intelligence-powered quantitative computed tomography (AI-QCT). By integrating AI-QCT with clinical risk factors, the predictive accuracy for cardiovascular events within 6 months significantly improves, with the area under the curve (AUC) increasing from 0.637 to 0.688, demonstrating its potential for reclassifying risk in CKM stage 3. In the domain of risk prediction, we trace the evolution from traditional statistical tools to next-generation models. The new PREVENT equation represents a major advancement by incorporating key kidney function markers (eGFR, UACR), which can enhance the detection rate of CKD in primary care by 20%-30%. However, we contend that the future lies in dynamic, machine learning-based models. Algorithms such as XGBoost have achieved an AUC of 0.82 for predicting 365-day cardiovascular events, while deep learning models like KFDeep have demonstrated exceptional performance in predicting kidney failure risk with an AUC of 0.946. Unlike static calculators, these AI-driven tools can process complex, multimodal data and continuously update risk profiles, paving the way for truly personalized and proactive medicine. In conclusion, this review advocates for a paradigm shift toward a holistic and technologically advanced framework for CKM management. Future efforts must focus on the deep integration of multimodal data, the development of novel AI-driven biomarkers, the implementation of refined SDoH-informed interventions, and the promotion of interdisciplinary collaboration to construct an efficient, equitable, and effective system for CKM screening and intervention.
2.Research progress of effect mechanism of acupotomy for knee osteoarthritis.
Wenying YU ; Jing LIU ; Hong LIU ; Liangzhi ZHANG ; Zehao LIN ; Zhongbiao XIU
Chinese Acupuncture & Moxibustion 2025;45(6):867-874
Acupotomy therapy demonstrates the definite clinical efficacy on knee osteoarthritis (KOA). After reviewing systematically the mechanism studies on acupotomy for KOA over the past 5 years, It is revealed that acupotomy synergistically intervenes in the pathological progression of KOA through multi-target approaches, such as regulating cartilage homeostasis, restoring skeletal muscle function, alleviating synovial inflammatory responses, remodeling subchondral bone, and neuromodulation. But the current research still limits to single-tissue phenotypic observation, and is insufficiency in the in-depth exploration of multi-tissue synergistic interactions and molecular upstream-downstream regulatory mechanisms. Future studies should focus on the inheritance and innovation of acupotomy theory, and integrating multi-omics analytical technologies, artificial intelligence, and novel biochemical detection methods. The mechanism research targets on the interaction mechanisms among tissues, direct effects of acupotomy, immune-inflammatory regulatory mechanisms, and analgesic mechanisms, so as to comprehensively elucidate the therapeutic mechanism of acupotomy for KOA.
Humans
;
Acupuncture Therapy
;
Osteoarthritis, Knee/genetics*
;
Animals
3.Study on mechanism of naringin in alleviating cerebral ischemia/reperfusion injury based on DRP1/LRRK2/MCU axis.
Kai-Mei TAN ; Hong-Yu ZENG ; Feng QIU ; Yun XIANG ; Zi-Yang ZHOU ; Da-Hua WU ; Chang LEI ; Hong-Qing ZHAO ; Yu-Hong WANG ; Xiu-Li ZHANG
China Journal of Chinese Materia Medica 2025;50(9):2484-2494
This study aims to investigate the molecular mechanism by which naringin alleviates cerebral ischemia/reperfusion(CI/R) injury through DRP1/LRRK2/MCU signaling axis. A total of 60 SD rats were randomly divided into the sham group, the model group, the sodium Danshensu group, and low-, medium-, and high-dose(50, 100, and 200 mg·kg~(-1)) naringin groups, with 10 rats in each group. Except for the sham group, a transient middle cerebral artery occlusion/reperfusion(tMCAO/R) model was established in SD rats using the suture method. Longa 5-point scale was used to assess neurological deficits. 2,3,5-Triphenyl tetrazolium chloride(TTC) staining was used to detect the volume percentage of cerebral infarction in rats. Hematoxylin-eosin(HE) staining and Nissl staining were employed to assess neuronal structural alterations and the number of Nissl bodies in cortex, respectively. Western blot was used to determine the protein expression levels of B-cell lymphoma-2 gene(Bcl-2), Bcl-2-associated X protein(Bax), cleaved cysteine-aspartate protease-3(cleaved caspase-3), mitochondrial calcium uniporter(MCU), microtubule-associated protein 1 light chain 3(LC3), and P62. Mitochondrial structure and autophagy in cortical neurons were observed by transmission electron microscopy. Immunofluorescence assay was used to quantify the fluorescence intensities of MCU and mitochondrial calcium ion, as well as the co-localization of dynamin-related protein 1(DRP1) with leucine-rich repeat kinase 2(LRRK2) and translocase of outer mitochondrial membrane 20(TOMM20) with LC3 in cortical mitochondria. The results showed that compared with the model group, naringin significantly decreased the volume percentage of cerebral infarction and neurological deficit score in tMCAO/R rats, alleviated the structural damage and Nissl body loss of cortical neurons in tMCAO/R rats, inhibited autophagosomes in cortical neurons, and increased the average diameter of cortical mitochondria. The Western blot results showed that compared to the sham group, the model group exhibited increased levels of cleaved caspase-3, Bax, MCU, and the LC3Ⅱ/LC3Ⅰ ratio in the cortex and reduced protein levels of Bcl-2 and P62. However, naringin down-regulated the protein expression of cleaved caspase-3, Bax, MCU and the ratio of LC3Ⅱ/LC3Ⅰ ratio and up-regulated the expression of Bcl-2 and P62 proteins in cortical area. In addition, immunofluorescence analysis showed that compared with the model group, naringin and positive drug treatments significantly decreased the fluorescence intensities of MCU and mitochondrial calcium ion. Meanwhile, the co-localization of DRP1 with LRRK2 and TOMM20 with LC3 in cortical mitochondria was also decreased significantly after the intervention. These findings suggest that naringin can alleviate cortical neuronal damage in tMCAO/R rats by inhibiting DRP1/LRRK2/MCU-mediated mitochondrial fragmentation and the resultant excessive mitophagy.
Animals
;
Rats, Sprague-Dawley
;
Reperfusion Injury/genetics*
;
Flavanones/administration & dosage*
;
Rats
;
Dynamins/genetics*
;
Male
;
Brain Ischemia/genetics*
;
Protein Serine-Threonine Kinases/genetics*
;
Signal Transduction/drug effects*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
4.Enrichment Analysis and Deep Learning in Biomedical Ontology: Applications and Advancements.
Hong-Yu FU ; Yang-Yang LIU ; Mei-Yi ZHANG ; Hai-Xiu YANG
Chinese Medical Sciences Journal 2025;40(1):45-56
Biomedical big data, characterized by its massive scale, multi-dimensionality, and heterogeneity, offers novel perspectives for disease research, elucidates biological principles, and simultaneously prompts changes in related research methodologies. Biomedical ontology, as a shared formal conceptual system, not only offers standardized terms for multi-source biomedical data but also provides a solid data foundation and framework for biomedical research. In this review, we summarize enrichment analysis and deep learning for biomedical ontology based on its structure and semantic annotation properties, highlighting how technological advancements are enabling the more comprehensive use of ontology information. Enrichment analysis represents an important application of ontology to elucidate the potential biological significance for a particular molecular list. Deep learning, on the other hand, represents an increasingly powerful analytical tool that can be more widely combined with ontology for analysis and prediction. With the continuous evolution of big data technologies, the integration of these technologies with biomedical ontologies is opening up exciting new possibilities for advancing biomedical research.
Deep Learning
;
Biological Ontologies
;
Humans
;
Big Data
;
Biomedical Research
5.Advances in research on gender differences in autism spectrum disorders.
Tong-Tong JIANG ; Xiu-Qiong LI ; Ting-Ting ZHAO ; Hong-Yu LI ; Qiang TANG
Chinese Journal of Contemporary Pediatrics 2025;27(4):480-486
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social impairments, repetitive behaviors, and restricted interests. Studies have shown that it is more prevalent in males than females. Although this issue has attracted academic attention since the 20th century, the specific mechanisms underlying the gender differences in ASD remain unclear. This paper reviews the impact of gender differences in ASD, focusing on the female protective effect, DNA methylation, hormone levels, and clinical manifestations. It also discusses corresponding treatment options, particularly suggesting improvements in the diagnostic process, which is often overlooked, in order to provide valuable references for the clinical diagnosis and treatment of ASD.
Humans
;
Autism Spectrum Disorder/genetics*
;
Female
;
Male
;
DNA Methylation
;
Sex Factors
;
Sex Characteristics
6.Study on the Mechanism of Piperlongumine Inducing Ferroptosis in K562/ADR Cells through the miR-214-3p/GPX4 Pathway.
Ting ZHANG ; Cui-Cui WANG ; Cong ZHU ; Xin-Yu ZHOU ; Xiu-Hong JIA
Journal of Experimental Hematology 2025;33(4):1007-1015
OBJECTIVE:
To investigate the effect of piperlongumine(PL) on the proliferation and ferroptosis of human adriamycin-resistant chronic myeloid leukemia K562/ADR cells, and to explore its possible molecular mechanism.
METHODS:
CCK-8 assay was used to detect the effect of PL on the survival rate of K562/ADR cells and to screen the appropriate drug concentration. After K562/ADR cells were treated with low, medium and high concentrations of PL(2, 4, and 6 μmol/L), EdU proliferation assay and plate colony formation assay were used to detect cell proliferation and colony formation ability. CCK-8 assay was used to detect the effects of different inhibitors (Fer-1, Z-VAD, Nec-1) combined with PL on cell proliferation. The intracellular Fe2+, ROS, malondialdehyde(MDA) and glutathine(GSH) contents were respectively detected by iron ion colorimetry, DCFH-DA fluorescent probe, MDA and GSH kits. RT-qPCR and Western blot were respectively used to detect the expression level of GPX4 mRNA and protein in cells. Bioinformatics websites predicted miRNA that could target and regulate GPX4 . RT-qPCR was used to detect the effects of different concentrations of PL on the expression levels of the predicted miRNA. Dual luciferase gene reporter assay was used to verify the targeting relationship between miR-214-3p and GPX4 . After treating cells with PL or PL+miR-214-3p inhibitor, the Fe2+, ROS, MDA, GSH centents and GPX4 protein expression levels in cells were detected.
RESULTS:
PL inhibited K562/ADR cell proliferation in a concentration-dependent manner(r =0.979). Compared with the blank control group, the survival rate, EdU positive cells rate in low, medium and high concentration PL groups were significantly decreased (P < 0.01). Compared with the PL group alone, the survival rate of cells in the Z-VAD+PL group was increased slightly (P < 0.05). The cell survival rate was significantly increased in medium or high concentration PL+Fer-1 group (P < 0.01). Compared with blank control group, ROS expression level in low concentration PL group was slightly increased (P < 0.05), and GSH content was slightly decreased (P < 0.05). In medium and high concentration PL groups, the contents of Fe2+, ROS and MDA were significantly increased (P < 0.01), while the contents of GSH, expression of GPX4 mRNA and protein were significantly decreased(P < 0.01). Bioinformatics prediction and double luciferase reporter gene experiment confirmed the targeting relationship between GPX4 and miR-214-3p. Compared with the blank control group, the expression level of miR-214-3p in cells of medium and high concentration PL groups was significantly increased (P < 0.01). Compared with PL group alone, the intracellular Fe2+, ROS and MDA contents in PL+miR-214-3p inhibitor group were all decreased (P < 0.01), while GSH content and GPX4 protein expression levels were significantly increased (P < 0.01).
CONCLUSION
Medium and high concentrations of PL can inhibit the proliferation of K562/ADR cells by inducing ferroptosis, which is related to the regulation of miR-214-3p pathway.
Humans
;
Ferroptosis/drug effects*
;
MicroRNAs/metabolism*
;
Dioxolanes/pharmacology*
;
Cell Proliferation/drug effects*
;
K562 Cells
;
Phospholipid Hydroperoxide Glutathione Peroxidase
;
Reactive Oxygen Species
;
Doxorubicin/pharmacology*
;
Signal Transduction
;
Piperidones
7.Glucocorticoid Discontinuation in Patients with Rheumatoid Arthritis under Background of Chinese Medicine: Challenges and Potentials Coexist.
Chuan-Hui YAO ; Chi ZHANG ; Meng-Ge SONG ; Cong-Min XIA ; Tian CHANG ; Xie-Li MA ; Wei-Xiang LIU ; Zi-Xia LIU ; Jia-Meng LIU ; Xiao-Po TANG ; Ying LIU ; Jian LIU ; Jiang-Yun PENG ; Dong-Yi HE ; Qing-Chun HUANG ; Ming-Li GAO ; Jian-Ping YU ; Wei LIU ; Jian-Yong ZHANG ; Yue-Lan ZHU ; Xiu-Juan HOU ; Hai-Dong WANG ; Yong-Fei FANG ; Yue WANG ; Yin SU ; Xin-Ping TIAN ; Ai-Ping LYU ; Xun GONG ; Quan JIANG
Chinese journal of integrative medicine 2025;31(7):581-589
OBJECTIVE:
To evaluate the dynamic changes of glucocorticoid (GC) dose and the feasibility of GC discontinuation in rheumatoid arthritis (RA) patients under the background of Chinese medicine (CM).
METHODS:
This multicenter retrospective cohort study included 1,196 RA patients enrolled in the China Rheumatoid Arthritis Registry of Patients with Chinese Medicine (CERTAIN) from September 1, 2019 to December 4, 2023, who initiated GC therapy. Participants were divided into the Western medicine (WM) and integrative medicine (IM, combination of CM and WM) groups based on medication regimen. Follow-up was performed at least every 3 months to assess dynamic changes in GC dose. Changes in GC dose were analyzed by generalized estimator equation, the probability of GC discontinuation was assessed using Kaplan-Meier curve, and predictors of GC discontinuation were analyzed by Cox regression. Patients with <12 months of follow-up were excluded for the sensitivity analysis.
RESULTS:
Among 1,196 patients (85.4% female; median age 56.4 years), 880 (73.6%) received IM. Over a median 12-month follow-up, 34.3% (410 cases) discontinued GC, with significantly higher rates in the IM group (40.8% vs. 16.1% in WM; P<0.05). GC dose declined progressively, with IM patients demonstrating faster reductions (median 3.75 mg vs. 5.00 mg in WM at 12 months; P<0.05). Multivariate Cox analysis identified age <60 years [P<0.001, hazard ratios (HR)=2.142, 95% confidence interval (CI): 1.523-3.012], IM therapy (P=0.001, HR=2.175, 95% CI: 1.369-3.456), baseline GC dose ⩽7.5 mg (P=0.003, HR=1.637, 95% CI: 1.177-2.275), and absence of non-steroidal anti-inflammatory drugs use (P=0.001, HR=2.546, 95% CI: 1.432-4.527) as significant predictors of GC discontinuation. Sensitivity analysis (545 cases) confirmed these findings.
CONCLUSIONS
RA patients receiving CM face difficulties in following guideline-recommended GC discontinuation protocols. IM can promote GC discontinuation and is a promising strategy to reduce GC dependency in RA management. (Trial registration: ClinicalTrials.gov, No. NCT05219214).
Adult
;
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Arthritis, Rheumatoid/drug therapy*
;
Glucocorticoids/therapeutic use*
;
Medicine, Chinese Traditional
;
Retrospective Studies
8.Factors and Their Impact on Treatment Effect of Acupuncture in Different Outcomes: A Meta-Regression of Acupuncture Randomized Controlled Trials.
Wen-Cui XIU ; Wei-Juan GANG ; Qi ZHOU ; Lan-Jun SHI ; Xiang-Yu HU ; Tian-Yu MING ; Zhen LUO ; Yu-Qing ZHANG ; Xiang-Hong JING
Chinese journal of integrative medicine 2024;30(3):260-266
BACKGROUND:
The effects of acupuncture have varied in different randomized controlled trials (RCTs), and there are many factors that influence treatment effect of acupuncture in different outcomes, with conflicting results.
OBJECTIVE:
To identify factors and their impact on the treatment effect of acupuncture in different outcomes.
METHODS:
Acupuncture RCTs were searched from 7 databases including Medline (PubMed), Embase, Cochrane Central Register of Controlled Trials, China National Knowledge Infrastructure, Wanfang Database, VIP Database, and China Biology Medicine disc between January 1st, 2015 and December 31st, 2019. Eligible studies must compare acupuncture to no acupuncture, sham acupuncture, or waiting lists, and report at least 1 patient-important outcome. A multi-level meta-regression was conducted using a 3-level robust mixed model and univariate analyses were performed for all independent variables, even those excluded from the multivariable model due to collinearities. We used thresholds of 0.2 and 0.4 for the difference of standardized mean differences (SMDs), categorising them as small (<0.2), moderate (0.2-0.4), or large (>0.4) effects.
RESULTS:
The pain construct analysis involved 211 effect estimates from 153 studies and 14 independent variables. High-frequency acupuncture treatment sessions produced larger effects compared to low-frequency sessions [large magnitude, the difference of adjusted SMDs 0.46, 95% confidence interval (CI) 0.07 to 0.84; P=0.02]. The non-pain symptoms construct analysis comprised 323 effect estimates from 231 studies and 15 independent variables. Penetrating acupuncture showed moderately larger effects when compared to non-penetrating acupuncture (0.30, 95% CI 0.06 to 0.53; P=0.01). The function construct analysis included 495 effect estimates from 274 studies and 14 independent variables. Penetrating acupuncture and the flexible acupuncture regimen showed moderately larger effects, compared to non-penetrating acupuncture and fixed regimen, respectively (0.40, 95% CI 0 to 0.80; P=0.05; 0.29, 95% CI 0.06 to 0.53; P=0.01).
CONCLUSIONS
High-frequency acupuncture sessions appear to be a more effective approach to managing painful symptoms. Penetrating acupuncture demonstrated greater effect in relieving non-painful symptoms. Both penetrating acupuncture type and flexible acupuncture regimen were linked to significant treatment effects in function outcomes. Future studies should consider the factors that are significantly associated with the effects of acupuncture in patient-important outcomes.
Humans
;
Randomized Controlled Trials as Topic
;
Acupuncture Therapy/methods*
;
Pain
;
Pain Management
;
China
9.Content determination of seventeen amino acids in Gualoupi Injection and its intermediates and research on their change laws
Xiang TAO ; Jing-Xian ZHANG ; Qing HU ; Jian SUN ; Ying DONG ; Jin-Guo DING ; Hong YU ; Ying-Ying SHEN ; Xiu-Hong MAO ; Shen JI
Chinese Traditional Patent Medicine 2024;46(3):709-717
AIM To determine the contents of aspartic acid,glutamic acid,serine,glycine,threonine,citrulline,arginine,alanine,γ-amino-butyric acid,tyrosine,valine,phenlalanine,isoleucine,ornithine,leucine,lysine and proline in Gualoupi Injection and its intermediates,and to analyze their change laws.METHODS The OPA-FMOC online derivatization analysis was performed on a 45℃ thermostatic Waters XBridge C18 column(4.6 mm×100 mm,3.5 μm),with the mobile phase comprising of phosphate buffer solution-[methanol-acetonitrile-water(45 : 45 : 10)]flowing at 1 mL/min in a gradient elution manner,and the detection wavelengths were set at 262,338 nm.Principal component analysis and heatmap analysis were adopted in chemical pattern recognition for the corresponding intermediates in ten processes of six batches of samples.RESULTS Seventeen amino acids showed good linear relationships within their own ranges(R2>0.998 0),whose average recoveries were 83.4%-119.5%with the RSDs of 0.91%-7.94%.Different batches of samples in the same process were clustered,and the corresponding intermediates in different processed were clustered into three groups.Alcohol precipitation and cation exchange column demonstrated the biggest influences on amino acid composition.CONCLUSION This experiment can provide important references for the critical factors on quality control of Gualoupi Injection,thus ensure the stability and uniformity of final product.
10.Development and application of a method for identifying Pheretima and a common counterfeit of Metaphire magna based on signature peptides
Rui LIU ; Jing-xian ZHANG ; Qing HU ; Jian SUN ; Hong YU ; Ying-ying RAN ; Fan HUANG ; Xiu-hong MAO ; Shen JI
Acta Pharmaceutica Sinica 2024;59(10):2842-2848
Based on the species-specific peptides of

Result Analysis
Print
Save
E-mail