1.Relationship Between Severe Pneumonia and Signaling Pathways and Regulation by Chinese Medicine: A Review
Cheng LUO ; Bo NING ; Xinyue ZHANG ; Yuzhi HUO ; Xinhui WU ; Yuanhang YE ; Fei WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):294-302
Severe pneumonia is one of the most common and critical respiratory diseases in clinical practice. It is characterized by rapid progression, difficult treatment, high mortality, and many complications, posing a significant threat to the life and health of patients. The pathogenesis of severe pneumonia is highly complex, and studies have shown that its occurrence and development are closely related to multiple signaling pathways. Currently, the treatment of severe pneumonia mainly focuses on anti-infection, mechanical ventilation, and glucocorticoids, but clinical outcomes are often not ideal. Therefore, finding safe and effective alternative therapies is particularly important. In recent years, with the deepening of research into traditional Chinese medicine (TCM), it has gained widespread attention in the treatment of severe pneumonia. This paper reviewed the relationship between severe pneumonia and relevant signaling pathways in recent years and how TCM regulated these pathways in the treatment of severe pneumonia. It was found that TCM could regulate the Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor-κB (NF-κB), Janus kinase (JAK)/signal transducer and activator of transcription (STAT), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), NOD-like receptor protein 3 (NLRP3), and nuclear factor E2-related factor 2 (Nrf2) signaling pathways, playing a role in reducing the inflammatory response, inhibiting cell apoptosis and pyroptosis, improving oxidative stress, and other effects in the treatment of severe pneumonia. Among these pathways, it was found that all of them regulated inflammation to treat severe pneumonia. Therefore, reducing inflammation is the core mechanism by which Chinese medicine treats severe pneumonia. This review provides direction for the clinical treatment of severe pneumonia and offers a scientific basis for the research and development of new drugs.
2.Research on proactive pharmaceutical service model of discharge medication order review and medication education under resident pharmacist system
Wenxu SUN ; Xinyue YOU ; Xian JIANG ; Fengbo WU
China Pharmacy 2025;36(10):1243-1247
OBJECTIVE To develop a pharmaceutical service model for discharge medication order review and medication education (hereinafter referred to as the “proactive pharmaceutical service model”), and evaluate its effects. METHODS The data of discharged patients were collected retrospectively from Rheumatology and Immunology Department of our hospital during January to June 2023 and January to June 2024. Patients discharged from January to June 2024 were classified as the intervention group (489 cases), while patients discharged from January to June 2023 were classified as the control group (535 cases) based on the different pharmaceutical service models they received. The control group received traditional service model, and the intervention group additionally got proactive pharmaceutical service model based on the control group. The primary outcome measures [the number of discharge medications, the number of medication errors, and the occurrence of adverse drug-drug interaction (DDI)] and follow-up outcome measures (the adjustment of medication regimen due to intolerance, unplanned hospital admissions, and proactive seeking of pharmaceutical services after discharge) were compared between the two groups. The discharge medication order review status, the occurrence of adverse DDI in patients with polypharmacy, and bedside medication education status for patients receiving the proactive pharmaceutical service model were all recorded. RESULTS From January to June 2024, a total of 1 052 discharge medication order review for inpatients were reviewed, and 174 instances of medication errors were identified. Polypharmacy was observed in 579 patients, with an incidence rate of 55.04%. The incidence of adverse DDI was significantly higher in patients with polypharmacy compared to those without polypharmacy (P<0.001). Pharmacists completed medication guidance for 394 instances of high-risk patients prone to the incidence rate of medication errors at home. The number of discharge medications, the incidence rate of medication errors, instances of medication not matching the diagnosis, dosage and administration errors, adverse DDI, and the incidence rate of patients who required adjustment of medication regimen due to intolerance were all significantly lower in the intervention group compared to the control group (P<0.05). Additionally, the incidence rate of patients who proactive seeking of pharmaceutical services after discharge was significantly higher in the intervention group compared to the control group (P<0.05). However, there was no significant difference in the incidence rate of unplanned hospital admissions between the two groups (P>0.05). CONCLUSIONS The established proactive pharmaceutical service model can reduce medication errors, enhance patient recognition of pharmaceutical services, and ensure medication safety for discharged patients at home.
3.Severe COVID-19 and inactivated vaccine in diabetic patients with SARS-CoV-2 infection.
Yaling YANG ; Feng WEI ; Duoduo QU ; Xinyue XU ; Chenwei WU ; Lihua ZHOU ; Jia LIU ; Qin ZHU ; Chunhong WANG ; Weili YAN ; Xiaolong ZHAO
Chinese Medical Journal 2025;138(10):1257-1259
4.CCDC97 influences the immune microenvironment and biological functions in HCC.
Lingling MO ; Xinyue WU ; Xiaohua PENG ; Chuang CHEN
Chinese Journal of Cellular and Molecular Immunology 2025;41(1):23-30
Objective To explore the clinical and immunological significance of CCDC97 in hepatocellular carcinoma (HCC). Methods Clinical data and RNA sequencing results from HCC patients were retrieved from TCGA and ICGC databases. Bioinformatics analysis and in vitro experiments were performed to investigate the role of CCDC97 in HCC. Results The expression level of CCDC97 was elevated in HCC patients and HCC cells, closely associated with pathological features and prognosis. CCDC97 was identified as a novel prognostic biomarker. It is linked to the spliceosome pathway, which is significantly active in tumors and potentially promotes carcinogenesis. CCDC97 is also highly expressed in various immune cells and is associated with microenvironment. Furthermore, knocking down CCDC97 in vitro suppressed cell migration, invasion, and proliferation. Conclusion CCDC97 plays a critical role in HCC progression and the immune microenvironment, making it a potential target for prognosis and therapeutic intervention.
Humans
;
Carcinoma, Hepatocellular/metabolism*
;
Liver Neoplasms/metabolism*
;
Tumor Microenvironment/genetics*
;
Cell Movement/genetics*
;
Cell Proliferation
;
Prognosis
;
Cell Line, Tumor
;
Gene Expression Regulation, Neoplastic
;
Biomarkers, Tumor/genetics*
;
Male
5.Progress in Application of Novel Functional Hemostatic Dressings in Patients with Continuous Bleeding after PICC Catheterization.
Jimin WU ; Qiong YAN ; Haiying XU ; Xiaohong ZHANG ; Xinyue LI ; Jinlei DU
Chinese Journal of Medical Instrumentation 2025;49(2):169-175
The high incidence of bleeding after peripherally inserted central catheter (PICC) catheterization increases the risk of puncture site infection and unplanned extubation. Hemostatic dressings should be used in the early stages of catheterization to reduce blood infiltration. However, new hemostatic dressings have various types and advantages, which makes them difficult to choose dressings for medical staff. This paper introduces the types and hemostatic characteristics of novel functional hemostatic dressings, reviews the hemostatic mechanism and hemostatic effect of chitosan, cyanoacrylate gum, alginate, gelatin sponge and oxycellulose dressings in PICC puncture respectively, and prospects the development of new functional hemostatic dressings. It is expected that future hemostatic dressings will move towards multifunctionality and compositeness.
Humans
;
Bandages
;
Catheterization, Peripheral/instrumentation*
;
Hemorrhage/prevention & control*
;
Hemostatics/therapeutic use*
6.Triangular Wave tACS Improves Working Memory Performance by Enhancing Brain Activity in the Early Stage of Encoding.
Jianxu ZHANG ; Jian OUYANG ; Tiantian LIU ; Xinyue WANG ; Binbin GAO ; Jinyan ZHANG ; Manli LUO ; Anshun KANG ; Zilong YAN ; Li WANG ; Guangying PEI ; Shintaro FUNAHASHI ; Jinglong WU ; Jian ZHANG ; Tianyi YAN
Neuroscience Bulletin 2025;41(7):1213-1228
Working memory is an executive memory process that includes encoding, maintenance, and retrieval. These processes can be modulated by transcranial alternating current stimulation (tACS) with sinusoidal waves. However, little is known about the impact of the rate of current change on working memory. In this study, we aimed to investigate the effects of two types of tACS with different rates of current change on working memory performance and brain activity. We applied a randomized, single-blind design and divided 81 young participants who received triangular wave tACS, sinusoidal wave tACS, or sham stimulation into three groups. Participants performed n-back tasks, and electroencephalograms were recorded before, during, and after active or sham stimulation. Compared to the baseline, working memory performance (accuracy and response time) improved after stimulation under all stimulation conditions. According to drift-diffusion model analysis, triangular wave tACS significantly increased the efficiency of non-target information processing. In addition, compared with sham conditions, triangular wave tACS reduced alpha power oscillations in the occipital lobe throughout the encoding period, while sinusoidal wave tACS increased theta power in the central frontal region only during the later encoding period. The brain network connectivity results showed that triangular wave tACS improved the clustering coefficient, local efficiency, and node degree intensity in the early encoding stage, and these parameters were positively correlated with the non-target drift rate and decision starting point. Our findings on how tACS modulates working memory indicate that triangular wave tACS significantly enhances brain network connectivity during the early encoding stage, demonstrating an improvement in the efficiency of working memory processing. In contrast, sinusoidal wave tACS increased the theta power during the later encoding stage, suggesting its potential critical role in late-stage information processing. These findings provide valuable insights into the potential mechanisms by which tACS modulates working memory.
Humans
;
Memory, Short-Term/physiology*
;
Male
;
Female
;
Young Adult
;
Transcranial Direct Current Stimulation/methods*
;
Brain/physiology*
;
Adult
;
Electroencephalography
;
Single-Blind Method
7.Regulation of iron metabolism in ferroptosis: From mechanism research to clinical translation.
Xin ZHANG ; Yang XIANG ; Qingyan WANG ; Xinyue BAI ; Dinglun MENG ; Juan WU ; Keyao SUN ; Lei ZHANG ; Rongrong QIANG ; Wenhan LIU ; Xiang ZHANG ; Jingling QIANG ; Xiaolong LIU ; Yanling YANG
Journal of Pharmaceutical Analysis 2025;15(10):101304-101304
Iron is an essential trace element in the human body, crucial in maintaining normal physiological functions. Recent studies have identified iron ions as a significant factor in initiating the ferroptosis process, a novel mode of programmed cell death characterized by iron overload and lipid peroxide accumulation. The iron metabolism pathway is one of the primary mechanisms regulating ferroptosis, as it maintains iron homeostasis within the cell. Numerous studies have demonstrated that abnormalities in iron metabolism can trigger the Fenton reaction, exacerbating oxidative stress, and leading to cell membrane rupture, cellular dysfunction, and damage to tissue structures. Therefore, regulation of iron metabolism represents a key strategy for ameliorating ferroptosis and offers new insights for treating diseases associated with iron metabolism imbalances. This review first summarizes the mechanisms that regulate iron metabolic pathways in ferroptosis and discusses the connections between the pathogenesis of various diseases and iron metabolism. Next, we introduce natural and synthetic small molecule compounds, hormones, proteins, and new nanomaterials that can affect iron metabolism. Finally, we provide an overview of the challenges faced by iron regulators in clinical translation and a summary and outlook on iron metabolism in ferroptosis, aiming to pave the way for future exploration and optimization of iron metabolism regulation strategies.
8.The novel combination of astragaloside IV and formononetin protects from doxorubicin-induced cardiomyopathy by enhancing fatty acid metabolism.
Xinyue YU ; Zhaodi HAN ; Linling GUO ; Shaoqian DENG ; Jing WU ; Qingqing PAN ; Liuyi ZHONG ; Jie ZHAO ; Hui HUI ; Fengguo XU ; Zunjian ZHANG ; Yin HUANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(10):1171-1182
Astragali Radix (AR), a traditional Chinese medicine (TCM), has demonstrated therapeutic efficacy against various diseases, including cardiovascular conditions, over centuries of use. While doxorubicin serves as an effective chemotherapeutic agent against multiple cancers, its clinical application remains constrained by significant cardiotoxicity. Research has indicated that AR exhibits protective properties against doxorubicin-induced cardiomyopathy (DIC); however, the specific bioactive components and underlying mechanisms responsible for this therapeutic effect remain incompletely understood. This investigation seeks to identify the protective bioactive components in AR against DIC and elucidate their mechanisms of action. Through network medicine analysis, astragaloside IV (AsIV) and formononetin (FMT) were identified as potential cardioprotective agents from 129 AR components. In vitro experiments using H9c2 rat cardiomyocytes revealed that the AsIV-FMT combination (AFC) effectively reduced doxorubicin-induced cell death in a dose-dependent manner, with optimal efficacy at a 1∶2 ratio. In vivo, AFC enhanced survival rates and improved cardiac function in both acute and chronic DIC mouse models. Additionally, AFC demonstrated cardiac protection while maintaining doxorubicin's anti-cancer efficacy in a breast cancer mouse model. Lipidomic and metabolomics analyses revealed that AFC normalized doxorubicin-induced lipid profile alterations, particularly by reducing fatty acid accumulation. Gene knockdown studies and inhibitor experiments in H9c2 cells demonstrated that AsIV and FMT upregulated peroxisome proliferator activated receptor γ coactivator 1α (PGC-1α) and PPARα, respectively, two key proteins involved in fatty acid metabolism. This research establishes AFC as a promising therapeutic approach for DIC, highlighting the significance of multi-target therapies derived from natural herbals in contemporary medicine.
Animals
;
Doxorubicin/adverse effects*
;
Saponins/administration & dosage*
;
Isoflavones/pharmacology*
;
Rats
;
Cardiomyopathies/prevention & control*
;
Mice
;
Fatty Acids/metabolism*
;
Myocytes, Cardiac/metabolism*
;
Triterpenes/administration & dosage*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Humans
;
Cardiotonic Agents/administration & dosage*
;
Mice, Inbred C57BL
;
Cell Line
;
Astragalus Plant/chemistry*
;
Astragalus propinquus
9.miR-302a-3p targeting lysosomal-associated membrane protein 5 inhibits the invasion and metastasis of oral squamous cell carcinoma.
Li YU ; Tiejun ZHOU ; Xiao WU ; Xinhong LIN ; Xiaoyan ZHANG ; Yongxian LAI ; Xinyue LIAO ; Hang SI ; Yun FENG ; Jie JIAN ; Yan FENG
West China Journal of Stomatology 2025;43(4):547-558
OBJECTIVES:
This study aimed to explore the expression of lysosomal-associated membrane protein 5 (LAMP5) and microRNA (miR)-302a-3p in oral squamous cell carcinoma (OSCC) and their functional mechanism on the invasion and metastasis of OSCC.
METHODS:
The expression of LAMP5 in OSCC and its sensitivity as a prognostic indicator were analyzed on the basis of The Cancer Genome Atlas database. Western blot, quantitative reverse transcription polymerase chain reaction, and cell immunocytochemistry were used to detect the expression of LAMP5 in OSCC tissues and cells. The effect of LAMP5 on the proliferation, migration, and invasion of OSCC cells was evaluated through cell counting kit-8, immunocytochemistry, migration, and invasion assays, respectively. The miRNA targeting prediction websites were used to predict the miR that regulates LAMP5 and verify the targeted regulatory effect of miR-302a-3p on LAMP5. The effect of LAMP5 knockdown on OSCC tumor growth was evaluated in a nude mouse tumorigenesis model.
RESULTS:
LAMP5 was highly expressed in OSCC tissues and cells. It showed high sensitivity in the early diagnosis of OSCC. LAMP5 knockdown significantly inhibited the proliferation, migration, and invasion of OSCC cells, whereas LAMP5 overexpression increased these cell activities. The expression of LAMP5 was regulated by miR-302a-3p. In vivo, LAMP5 knockdown significantly inhibited the growth of OSCC tumor.
CONCLUSIONS
LAMP5 promotes the malignant progression of OSCC by enhancing the proliferation, migration, and invasion of OSCC cells. The expression of LAMP5 is negatively regulated by miR-302a-3p.
MicroRNAs/metabolism*
;
Mouth Neoplasms/metabolism*
;
Humans
;
Animals
;
Carcinoma, Squamous Cell/genetics*
;
Neoplasm Invasiveness
;
Cell Proliferation
;
Mice, Nude
;
Cell Movement
;
Lysosomal Membrane Proteins/genetics*
;
Mice
;
Cell Line, Tumor
;
Neoplasm Metastasis
10.Reflection and Exploration on Medical Equipment Sharing Operation Mechanisms in Large Public Hospitals
Wei QIAO ; Yingbo CHEN ; Dongqing ZHANG ; Di WU ; Xinyue LIU ; Zhuzi YUEGUANG ; Tian ZHANG ; Shuai JIANG ; Jinjin ZHAO
Chinese Health Economics 2024;43(7):69-71,92
The increasing operating pressure of large public hospitals has forced hospitals to focus on opening up income sources and reducing expenditure.The purchase and maintenance of medical equipment is one of the important economic activities of hospi-tals.However,there are problems in large public hospitals,such as the argumentation for equipment acquisition ignoring evaluation of operational efficiency,the costing model that leads to a lack of willingness of departments to purchase equipment,and the lack of standard processes and systems for renting medical equipment among departments.Based on this,it explores the establishment of a medical equipment sharing operation mechanism in large public hospitals,promotes the improvement of the efficiency of medical equipment use in large public hospitals by establishing a medical equipment sharing center,standardizing the purchase of shared equipment,entering shared equipment information,setting up shared equipment leasing specifications,and clarifying the equipment return process and maintenance,so as to effectively control hospital operating costs,and help the high-quality development of public hospitals.

Result Analysis
Print
Save
E-mail