1.Research progress on low-intensity pulsed ultrasound in promoting osseointegration of dental implants
ZHANG Xinyu ; QU Fang ; XU Chun
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(5):417-424
How to effectively promote osseointegration of dental implants remains a pressing clinical challenge. Low-intensity pulsed ultrasound (LIPUS) has demonstrated remarkable efficacy in accelerating the healing of various bodily tissues, including bone tissue. In recent years, there has been extensive research on its application in promoting osseointegration in the field of dental implantology. Animal studies have shown that LIPUS exhibits significant potential in facilitating osseointegration of dental implants. In vitro experiments have further revealed that LIPUS can enhance the expression of key osteogenic factors, extracellular matrix mineralization, and induce local neurons to secrete αCGRP. Through the regulation of signaling pathways such as bone morphogenetic protein/Smad (Bmp/Smad), mitogen-activated protein kinase (MAPK), and phosphatidylinositol 3-kinase/protein kinase B (PI3k/Akt), LIPUS promotes the proliferation, migration, and osteogenic differentiation of osteogenic-related cells, thereby enhancing osseointegration of dental implants. Additionally, clinical studies have shown that bone mass increases around the implants after LIPUS treatment, with more pronounced growth observed on the buccal bone plate than on the palatal side. Furthermore, there is a lack of research that systematically summarizes the clinical evidence, in vitro and in vivo studies, and mechanisms of action regarding the role of LIPUS in promoting osseointegration of implants. Therefore, the aim of this study is to discuss the mechanisms of effect of LIPUS on osseointegration of implants, with the goal of further enhancing the outcome of implant-supported prosthodontic treatment.
2.Therapeutic Effect of Wenweishu Granules on Functional Dyspepsia Rats with Spleen-stomach Deficiency Cold Syndrome Based on Bioinformatics Analysis and Experimental Validation
Xinyu YANG ; Xiaoyi JIA ; Zihua XUAN ; Shuangying GUI ; Yanfang WU ; Yuhan MA ; Qin RUAN ; Jia ZHENG ; Zhiyong JIAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):30-40
ObjectiveThis study aims to investigate the therapeutic effects of Wenweishu granule (WWSG) on functional dyspepsia (FD) with spleen-stomach deficiency cold syndrome in rats by integrating network pharmacology, molecular docking, and animal experiments. MethodsActive components and corresponding targets of WWSG were collected from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and the Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM). Disease-related targets for FD with spleen-stomach deficiency cold syndrome were screened using GeneCards and the Integrative Pharmacology-based Research Platform of Traditional Chinese Medicine (TCMIP). Core therapeutic targets were identified via Cytoscape and validated by molecular docking. A rat model of FD with spleen-stomach deficiency cold syndrome was established using vinegar gavage combined with tail-clamping. The rats were randomly divided into a model group, low-, medium-, and high-dose WWSG groups (2.0, 4.0, 8.0 g·kg-1), a domperidone group (3.0 mg·kg-1), a Fuzi Lizhong pillwan (0.8 g·kg-1), and a normal control group (n=10 per group). Drugs were administered once daily by gavage for 14 consecutive days. After treatment, body weight, symptom scores, and gastrointestinal motility indices were recorded. Gastric and duodenal pathologies changes were observed via hematoxylin-eosin (HE) staining. Brain-gut peptides were measured in serum and tissue using enzyme-linked immunosorbent assay (ELISA). Immunohistochemistry and Western blot were performed to assess stem cell factor (SCF) and receptor tyrosine kinase (c-Kit) protein expression in gastric tissues. ResultsA total of 305 drug targets, 1 140 disease targets, and 116 overlapping targets were identified. Cytoscape analysis revealed 104 core targets. Enrichment analysis indicated that the SCF/c-Kit signaling pathway was the key mechanism. Molecular docking confirmed a strong binding affinity between active components of WWSG and SCF/c-Kit proteins (binding energy<-5.1 kcal·mol-1). Compared with the normal group, model rats exhibited slower weight gain (P<0.05), reduced gastric emptying and intestinal propulsion (P<0.01), mild gastric mucosal shedding, duodenal inflammatory cell infiltration, decreased levels of gastrin (GAS), 5-hydroxytryptamine (5-HT), and vasoactive intestinal peptide (VIP) (P<0.05, P<0.01), and elevated somatostatin (SS) expression (P<0.05, P<0.01). WWSG treatment ameliorated weight gain, symptom scores, and low-grade inflammation in gastric/duodenal tissues. High-dose WWSG significantly improved gastric emptying and intestinal propulsion, upregulated GAS, 5-HT, and VIP, and downregulated SS expression in serum and tissues (P<0.05, P<0.01). Immunohistochemistry and Western blot demonstrated that SCF and c-Kit protein expression was decreased in the model group (P<0.05, P<0.01), which was reversed by WWSG intervention (P<0.05). ConclusionWWSG exerts therapeutic effects on FD with spleen-stomach deficiency cold syndrome in rats, potentially by regulating the SCF/c-Kit signaling pathway to enhance gastrointestinal motility.
3.Clinical efficacy of antagonistic needling therapy on post-stroke lower limb spasticity and its effect on muscle morphology.
Ting YU ; Jianwei WANG ; Xinyu JIAO ; Bolei LI ; Xinhaoning ZHANG ; Pengyu ZHU
Chinese Acupuncture & Moxibustion 2025;45(2):139-145
OBJECTIVE:
To observe the effects of antagonistic needling therapy on lower limb spasticity and the muscle morphology of the tibialis anterior and gastrocnemius in patients with stroke.
METHODS:
A total of 100 patients with post-stroke lower limb spasticity were randomly divided into an antagonistic needling group (50 cases, 1 case dropped out) and a routine acupuncture group (50 cases, 1 case dropped out). Both groups received basic treatment and rehabilitation training. The routine acupuncture group was treated with scalp acupuncture at anterior oblique line of vertex-temporal and vertex lateral line 1, combined with body acupuncture at Jianyu (LI15), Hegu (LI4), Zusanli (ST36), Taichong (LR3), etc. on the affected side, with Quchi (LI11) and Hegu (LI4), Zusanli (ST36) and Fenglong (ST40), Yanglingquan (GB34) and Taichong (LR3) connected to an electroacupuncture device, using disperse wave at 2 Hz of frequency. The antagonistic needling group used the same scalp and upper limb acupoints as the routine acupuncture group, with additional antagonistic needling on the lower limb at Yanglingquan (GB34), Qiuxu (GB40), Jiexi (ST41), and Xuanzhong (GB39) on the affected side, with Quchi (LI11) and Hegu (LI4), Yanglingquan (GB34) and Qiuxu (GB40), Jiexi (ST41), and Xuanzhong (GB39) connected to an electroacupuncture device, using disperse wave at 2 Hz of frequency. Both groups received treatment once daily for 6 consecutive days per course, with a total of 4 courses. The modified Ashworth scale (MAS), Holden functional ambulation classification (FAC), lower limb Fugl-Meyer assessment (FMA), composite spasticity scale (CSS), and musculoskeletal ultrasound parameters (thickness and fiber length of the tibialis anterior and gastrocnemius, and pennation angle of the gastrocnemius on both sides) were evaluated before and after treatment. Clinical efficacy was compared between the two groups.
RESULTS:
Compared before treatment, the MAS grades and CSS scores were decreased in both groups after treatment (P<0.01), with greater reductions in the antagonistic needling group (P<0.05, P<0.01). FAC grades and FMA scores were increased in both groups after treatment (P<0.01, P<0.05), with greater improvements in the antagonistic needling group (P<0.05). The muscle thickness, fiber length of the tibialis anterior, the muscle thickness, fiber length and pennation angle of the gastrocnemius on the affected side were improved in both groups after treatment (P<0.01), with greater improvements in the antagonistic needling group (P<0.01, P<0.05). On the unaffected side, these parameters were also increased after treatment in both groups (P<0.01, P<0.05), but the antagonistic needling group showed smaller increases than the routine acupuncture group (P<0.01, P<0.05). The total effective rate in the antagonistic needling group was 91.8% (45/49), higher than 81.6% (40/49) in the routine acupuncture group (P<0.05).
CONCLUSION
Antagonistic needling could effectively reduce spasticity, improve motor function, and enhance muscle structure in patients with post-stroke lower limb spasticity.
Humans
;
Male
;
Female
;
Acupuncture Therapy
;
Middle Aged
;
Muscle Spasticity/pathology*
;
Aged
;
Stroke/physiopathology*
;
Lower Extremity/physiopathology*
;
Acupuncture Points
;
Adult
;
Muscle, Skeletal/pathology*
;
Treatment Outcome
4.Intestinal barrier in chronic gut and liver diseases: Pathogenesis and therapeutic targets.
Yongxin ZHANG ; Yameng LIU ; Xinyu LIANG ; Yingquan WEN ; Jingjie ZHAO ; Yong HE ; Qing XIE ; Cen XIE
Acta Pharmaceutica Sinica B 2025;15(11):5515-5536
The intestinal barrier is the primary defense that separates the host from the external environment, possessing several crucial physiological functions, including nutrient digestion, absorption, and protection against potentially harmful dietary antigens and pathogenic microorganisms. Nevertheless, various factors, such as diet, medications, circadian rhythm disturbances, gut microbiota, microbial metabolites, and genetic predisposition, can disrupt the intestinal barrier. Such disruption may lead to bacterial translocation, subsequently triggering enterohepatic and systemic inflammation. Impaired intestinal barrier has been implicated in the pathogenesis of numerous diseases, particularly chronic gut and liver diseases. In this review, we will summarize the fundamental functions of intestinal barrier and discuss clinical correlations between intestinal barrier dysfunction and diseases such as colitis, colorectal cancer, and chronic liver diseases including metabolic dysfunction-associated steatohepatitis, alcohol-associated liver disease, and primary sclerosing cholangitis. Additionally, we will also highlight some potential therapeutic strategies aimed at restoring barrier integrity to improve disease management.
5.Scope review of research status and implications of financial toxicity in patients with heart failure
Kexin WANG ; Xinyu HE ; Yaping HE ; Ruilian LI ; Guoyan ZHANG ; Taofang JIAO ; Li LI
Chinese Journal of Practical Nursing 2024;40(31):2474-2481
Objective:To understand the current status of financial toxicity in patients with heart failure and the factors affecting it, and to provide ideas for making personalized and informed decisions.Methods:Using a scoping review methodological framework, PubMed, Embase, Cochrane Library, Web of Science, China National Knowledge Infrastructure, VIP, Wanfang, and SinoMed Databases were searched and screened for relevant literature on financial toxicity in patients with heart failure, with a timeframe of January 1, 2014-October 31, 2023, respectively. Relevant literature was identified based on inclusion and exclusion criteria, and data were extracted, collected, summarized, and the findings were reported.Results:Ten literatures that met the inclusion and exclusion criteria were identified. The results showed 5 cross-sectional surveys, 2 qualitative studies, and 1 each of reviews, mixed studies and commentaries. Heart failure patients generally faced high levels of financial toxicity, the incidence and severity of patient financial toxicity varied somewhat between study outcomes. Factors influencing financial toxicity in heart failure patients included age, education level, family income level, discussion of medical costs with physicians, type of insurance the patient had, and occupational status.Conclusions:In the future, we can develop and apply a specialized assessment tool for financial toxicity in heart failure patients in China, further explore the factors affecting financial toxicity in heart failure patients, and formulate personalized treatment plans and financial support strategies for patients according to the influencing factors, so as to reduce the impact of financial toxicity on heart failure patients.
6.AKBA combined with doxorubicin inhibits proliferation and metastasis of triple-negative breast cancer MDA-MB-231 cells and xenograft growth in nude mice.
Youqin ZENG ; Siyu CHEN ; Yan LIU ; Yitong LIU ; Ling ZHANG ; Jiao XIA ; Xinyu WU ; Changyou WEI ; Ping LENG
Journal of Southern Medical University 2024;44(12):2449-2460
OBJECTIVES:
To investigate the synergistic inhibitory effects of AKBA and doxorubicin on malignant phenotype of triple-negative breast cancer (TNBC) MDA-MB-231 cells.
METHODS:
CCK-8 assay was used to determine the 48-h IC50 of AKBA and doxorubicin in MDA-MB-231 cells, and SynergyFinder was employed to calculate the synergistic index and the optimal concentrations of the two agents. MDA-MB-231 cells treated with AKBA (22.5 μmol/L), doxorubicin (0.84 μmol/L) or their combination were examined for changes in cell proliferation, migration, invasion and apoptosis using Transwell migration, scratch assay, clone generation, RT-qPCR and Western blotting. Network pharmacology analysis was conducted to identify the downstream targets of AKBA in TNBC. In nude mouse models bearing subcutaneous MDA-MB-231 cell xenografts, the effects of normal saline, AKBA (50 mg/kg), doxorubicin (2.5 mg/kg), and AKBA combined with doxorubicin on xenograft growth and histopathology were observed.
RESULTS:
The IC50 of AKBA and doxorubicin in MDA-MB-231 cells at 48 h was 45.15±0.97 μmol/L and 0.42±0.99 μmol/L, respectively. SynergyFinder confirmed the synergistic effect of AKBA and ADR with a ZIP>10. The combined treatment with AKBA and doxorubicin significantly inhibited the proliferation, migration and invasion, promoted apoptosis of MDA-MB-231 cells, and effectively suppressed xenograft growth in nude mice. Network pharmacology analysis predicted that AKBA affects the progression of TNBC through its downstream target AKBA.
CONCLUSIONS
AKBA combined with doxorubicin inhibits proliferation, migration and invasion, promotes apoptosis of MDA-MB-231 cells and suppresses MDA-MB-231 cell xenograft growth in nude mice. The combined use of AKBA can attenuate the toxic effects of doxorubicin in nude mice.
Animals
;
Doxorubicin/pharmacology*
;
Triple Negative Breast Neoplasms/pathology*
;
Mice, Nude
;
Mice
;
Cell Proliferation/drug effects*
;
Cell Line, Tumor
;
Humans
;
Female
;
Apoptosis/drug effects*
;
Cell Movement/drug effects*
;
Xenograft Model Antitumor Assays
;
Drug Synergism
;
MDA-MB-231 Cells
7.Integrative pan-cancer analysis of cuproplasia-associated genes for the genomic and clinical characterization of 33 tumors.
Xinyu LI ; Weining MA ; Hui LIU ; Deming WANG ; Lixin SU ; Xitao YANG
Chinese Medical Journal 2023;136(21):2621-2631
BACKGROUND:
The molecular mechanisms driving tumorigenesis have continually been the focus of researchers. Cuproplasia is defined as copper-dependent cell growth and proliferation, including its primary and secondary roles in tumor formation and proliferation through signaling pathways. In this study, we analyzed the differences in the expression of cuproplasia-associated genes (CAGs) in pan-cancerous tissues and investigated their role in immune-regulation and tumor prognostication.
METHODS:
Raw data from 11,057 cancer samples were acquired from multiple databases. Pan-cancer analysis was conducted to analyze the CAG expression, single-nucleotide variants, copy number variants, methylation signatures, and genomic signatures of micro RNA (miRNA)-messenger RNA (mRNA) interactions. The Genomics of Drug Sensitivity in Cancer and the Cancer Therapeutics Response Portal databases were used to evaluate drug sensitivity and resistance against CAGs. Using single-sample Gene Set Enrichment Analysis (ssGSEA) and Immune Cell Abundance Identifier database, immune cell infiltration was analyzed with the ssGSEA score as the standard.
RESULTS:
Aberrantly expressed CAGs were found in multiple cancers. The frequency of single-nucleotide variations in CAGs ranged from 1% to 54% among different cancers. Furthermore, the correlation between CAG expression in the tumor microenvironment and immune cell infiltration varied among different cancers. ATP7A and ATP7B were negatively correlated with macrophages in 16 tumors including breast invasive carcinoma and esophageal carcinoma, while the converse was true for MT1A and MT2A . In addition, we established cuproplasia scores and demonstrated their strong correlation with patient prognosis, immunotherapy responsiveness, and disease progression ( P <0.05). Finally, we identified potential candidate drugs by matching gene targets with existing drugs.
CONCLUSIONS
This study reports the genomic characterization and clinical features of CAGs in pan-cancers. It helps clarify the relationship between CAGs and tumorigenesis, and may be helpful in the development of biomarkers and new therapeutic agents.
Humans
;
Female
;
Genomics
;
Carcinogenesis
;
Carcinoma
;
Breast Neoplasms
;
Cell Transformation, Neoplastic
;
Nucleotides
;
Tumor Microenvironment
8.Levels and health risks of exposure to neonicotinoid insecticides among 5-year-old children: Based on Laizhou Wan Birth Cohort in Shandong Province
Zhenping LU ; Xiaomeng CHENG ; Zhuanning XIA ; Chengyu PAN ; Xinyu ZHANG ; Yu GAO ; Ying TIAN
Journal of Environmental and Occupational Medicine 2023;40(6):655-660
Background Neonicotinoid insecticides (NEOs) are emerging synthetic insecticides that have been used in various pest management regimens worldwide as alternatives to conventional insecticides. Recently, several studies have indicated that humans are widely exposed to NEOs, but limited is known about the levels and associated health risks of NEOs exposure among children. Objective To estimate exposure levels of four kinds of NEOs in urine samples among 5-year-old children from Laizhou Wan, Shandong Province, and to evaluate health risks of single and cumulative exposure to NEOs among children in this area. Methods A total of 205 children who participated in the 5-year-old follow-up in Laizhou Wan Birth Cohort (LWBC) were included. Urinary concentrations of four NEOs [imidacloprid (IMI), acetamiprid (ACE), clothianidin (CLO), and thiamethoxam (THM)] were measured by high-performance liquid chromatography coupled with triple quadrupole mass spectrometry. Based on the detected NEOs concentrations, estimated daily intake (EDI) was calculated, and the health risk of exposure to single NEO was assessed using hazard quotient (HQ, risk threshold=1). A relative potency factor (RPF) approach was used to standardize the concentrations of the four NEOs by IMI to calculate their cumulative concentrations. Then, the health risk of cumulative exposure to the four NEOs was further evaluated based on the HQ method. Results The detection rates of the four NEOs in the 5-year-old children were all above 90%, and their median creatinine-adjusted urinary concentrations were in the order from high to low as follows: CLO (1.373 μg·g−1) > THM (0.628 μg·g−1) > IMI (0.310 μg·g−1) > ACE (0.073 μg·g−1). Of the four NEOs, the median EDI of IMI was 0.035 µg·kg−1·d−1, higher than those of CLO (0.032 µg·kg−1·d−1), THM (0.012 µg·kg−1·d−1), and ACE (0.002 µg·kg−1·d−1). The maximum HQ values of IMI, CLO, THM, and ACE were 0.168, 0.152, 0.055, and 0.022, respectively, which were all far lower than the risk threshold of 1. The median concentration of cumulative exposure to the four NEOs standardized by IMI was 21.241 μg·g−1, and its median EDI was 2.370 µg·kg−1·d−1. The maximum HQ of cumulative exposure to the four NEOs was only 0.694, which also did not exceed the risk threshold of 1. Conclusion NEOs exposure is common among the 5-year-old children in Laizhou Wan, Shandong. Although there is no obvious health risk associated with single and cumulative exposure to NEOs in the children in this area, their exposure levels of NEOs are higher than those in some foreign areas. The adverse health effects of long-term exposure to low dose of NEOs deserve our extensive attention.
9.Sodium butyrate activates HMGCS2 to promote ketone body production through SIRT5-mediated desuccinylation.
Yanhong XU ; Xiaotong YE ; Yang ZHOU ; Xinyu CAO ; Shiqiao PENG ; Yue PENG ; Xiaoying ZHANG ; Yili SUN ; Haowen JIANG ; Wenying HUANG ; Hongkai LIAN ; Jiajun YANG ; Jia LI ; Jianping YE
Frontiers of Medicine 2023;17(2):339-351
Ketone bodies have beneficial metabolic activities, and the induction of plasma ketone bodies is a health promotion strategy. Dietary supplementation of sodium butyrate (SB) is an effective approach in the induction of plasma ketone bodies. However, the cellular and molecular mechanisms are unknown. In this study, SB was found to enhance the catalytic activity of 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), a rate-limiting enzyme in ketogenesis, to promote ketone body production in hepatocytes. SB administrated by gavage or intraperitoneal injection significantly induced blood ß-hydroxybutyrate (BHB) in mice. BHB production was induced in the primary hepatocytes by SB. Protein succinylation was altered by SB in the liver tissues with down-regulation in 58 proteins and up-regulation in 26 proteins in the proteomics analysis. However, the alteration was mostly observed in mitochondrial proteins with 41% down- and 65% up-regulation, respectively. Succinylation status of HMGCS2 protein was altered by a reduction at two sites (K221 and K358) without a change in the protein level. The SB effect was significantly reduced by a SIRT5 inhibitor and in Sirt5-KO mice. The data suggests that SB activated HMGCS2 through SIRT5-mediated desuccinylation for ketone body production by the liver. The effect was not associated with an elevation in NAD+/NADH ratio according to our metabolomics analysis. The data provide a novel molecular mechanism for SB activity in the induction of ketone body production.
Mice
;
Animals
;
Butyric Acid/metabolism*
;
Ketone Bodies/metabolism*
;
Liver/metabolism*
;
Hydroxybutyrates/metabolism*
;
Down-Regulation
;
Sirtuins/metabolism*
;
Hydroxymethylglutaryl-CoA Synthase/metabolism*
10.Preparation and Evaluation of Reactive Oxygen Species/Glutathione Dual Responsive Paclitaxel Prodrug Nanoparticle
WANG Changhai ; ZHANG Xinyu ; JIAO Yuwen ; GUO Mingxue ; ZHAO Yueying ; ZHANG Zekang ; DU Shouying ; WANG Jinling ; U Yang
Chinese Journal of Modern Applied Pharmacy 2023;40(17):2414-2426
OBJECTIVE To design paclitaxel prodrug nanoparticles with dual reactive oxygen species/glutathione response (ProPTX-SS-NPs), providing new ideas and methods for the application of paclitaxel. METHODS The optimal preparation method and process of prodrug nanoparticles was investigated by using particle size and PDI as indicators; the morphology of prodrug nanoparticles was observed through electron microscopy and their particle size, potential, encapsulation efficiency, drug loading capacity, etc were investigated; the in vitro release characteristics of nanoparticles in reactive oxygen species and glutathione environments were investigated; the in vitro cytotoxicity and cellular uptake of prodrug nanoparticles were investigated through cell experiments. RESULTS The nano particle size prepared by the optimal process was (130.20±2.18)nm, with the PDI of 0.12±0.01, the Zeta potential of (-8.45±0.01)mV, the drug load of (10.27±1.36)%, and the encapsulation rate of (93.22±2.20)%. The prodrug nanoparticles showed reactive oxygen species and glutathione dual responsive release ability, and could significantly inhibit the proliferation of MCF-7, HepG2, and MDA-MB-231. Its inhibitory effect on MDA-MB-231 cells was the most significant. The IC50 of prodrug nanoparticles on MDA-MB-231 cells was (0.71±0.11)μmol·L, while the IC50of PTX was (22.38±3.27)μmol·L. CONCLUSION ProPTX-SS-NPs have excellent tumor microenvironment response performance and significant anti-tumor activity, which is a highly potential and promising anti-tumor nanosystem.


Result Analysis
Print
Save
E-mail