1.Xiaozheng Zhitong Paste Alleviates Bone Cancer Pain by Regulating PD-1/PD-L1-induced Osteoclast Formation
Lu SHANG ; Juanxia REN ; Guangda ZHENG ; Linghan MENG ; Lingyun WANG ; Changlin LI ; Dongtao LI ; Yaohua CHEN ; Guiping YANG ; Yanju BAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):72-79
ObjectiveThis study aims to investigate the action mechanism by which Xiaozheng Zhitong paste (XZP) alleviates bone cancer pain (BCP) by regulating programmed death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) pathway-induced osteoclast formation. MethodsThirty female C57BL/6 mice were randomly allocated into the following groups (n=6 per group): normal control group, model group, low‑dose XZP group (31.5 g·kg-1), high‑dose XZP group (63 g·kg-1), and PD‑1 inhibitor (Niv) group. A bone cancer pain (BCP) model was established by injecting Lewis lung carcinoma cells. Mice in the normal control and model groups received topical application of a blank paste matrix at the wound site. Mice in the low‑ and high‑dose XZP groups were treated with XZP applied topically twice daily. Mice in the Niv group were topically administered the blank paste matrix and additionally received Niv via tail‑vein injection every two days. All interventions were continued for 21 days. During this period, behavioral tests were performed to assess mechanical, motor, and thermal nociceptive sensitivities. After 21 days, all mice were euthanized, and bone tissue from the operated side was collected for sectioning and preservation. Tartrate‑resistant acid phosphatase (TRAP) staining was used to evaluate osteoclast expression in the lesioned bone tissue. Immunohistochemistry was performed to detect the expression of Runt‑related transcription factor 2 (Runx2) in the lesioned bone tissue. Immunofluorescence was employed to assess the expression of PD‑1 and PD‑L1 in the lesioned bone tissue. ResultsCompared with the normal group, the model group showed significantly decreased limb mechanical withdrawal threshold, spontaneous paw flinching, and thermal withdrawal latency (P<0.01), increased number of osteoclasts in the lesioned bone tissue (P<0.01), and reduced expression of Runx2 (P<0.01). Compared with the model group, the BCP mice in the XZP low-dose group, XZP high-dose group, and Niv group exhibited increased limb mechanical withdrawal threshold, movement scores, and thermal withdrawal latency (P<0.01). The XZP low-dose group showed no significant changes in osteoclast number or Runx2 expression, while the XZP high-dose group and Niv group demonstrated significantly reduced osteoclast numbers (P<0.01) and significantly increased Runx2 expression (P<0.01). In the lesioned bone tissue of BCP mice, the XZP low-dose group showed no significant decrease in the percentage of PD-1 expression, but a decrease in the percentage of PD-L1 expression (P<0.05). In contrast, both the XZP high-dose group and the Niv group exhibited significant reductions in the percentages of PD-1 and PD-L1 expression (P<0.01). ConclusionXZP alleviates the pain of mice with BCP by blocking the PD-1/PD-L1 pathway to inhibit osteoclastogenesis.
2.Mechanism of Xiaozheng Zhitong Paste in Alleviating Bone Cancer Pain by Regulating Microglial Pyroptosis Based on PINK1/Parkin/NLRP3 Signaling Pathway
Lingyun WANG ; Guangda ZHENG ; Lu SHANG ; Juanxia REN ; Changlin LI ; Dongtao LI ; Haixiao LIU ; Yaohua CHEN ; Guiping YANG ; Yanju BAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):80-90
ObjectiveThe paper aims to investigate the mechanism by which Xiaozheng Zhitong paste (XZP) alleviates bone cancer pain (BCP) through regulating the PTEN-induced putative kinase 1 (PINK1)/Parkin-mediated mitophagy-NOD-like receptor protein 3 (NLRP3) inflammasome pathway to suppress microglial pyroptosis. MethodsLipopolysaccharide (LPS) and LPS-adenosine triphosphate (ATP) were used to establish an inflammation and pyroptosis model in microglial cells. The cells were randomly divided into the following groups: control group, LPS group, LPS+low-dose XZP group, LPS+high-dose XZP group, LPS-ATP group, LPS-ATP+low-dose XZP group, LPS-ATP+high-dose XZP group, LPS-ATP+XZP group, and LPS-ATP+XZP+CsA group. Techniques including terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining, enzyme-linked immunosorbent assay (ELISA), Western blot, and confocal fluorescence staining were employed to assess the effects of XZP on microglial apoptosis, inflammatory cytokine release, inflammasome activation, pyroptosis, and mitophagy. ResultsIn vitro experiments showed that compared with the blank group, the LPS group exhibited significantly increased levels of microglial apoptosis and pro-inflammatory factors interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α)(P<0.01), along with significantly upregulated protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and phosphorylated nuclear factor-κB p65 (p-NF-κB p65) (P<0.01). Compared with the LPS group, the high-dose LPS-XZP group significantly reduced the level of apoptosis (P<0.01) and the content of the aforementioned pro-inflammatory factors (P<0.01). Both the low- and high-dose LPS-XZP groups dose-dependently downregulated the protein expression of iNOS, COX-2, and p-NF-κB p65 (P<0.05, P<0.01). Compared with the blank group, the LPS-ATP group showed significantly upregulated expression of pyroptosis-related proteins, including Caspase-1/pro-Caspase-1, N-terminal fragment of gasdermin D (GSDMD-N)/full-length gasdermin D (GSDMD-F), NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), IL-1β precursor (pro-IL-1β), and mature IL-1β (P<0.01). The levels of pyroptotic factors IL-1β and IL-18 were significantly elevated (P<0.01), and membrane pore formation and intracellular reactive oxygen species (ROS) levels were significantly increased (P<0.01). Compared with the LPS-ATP group, both the low- and high-dose LPS-ATP+XZP groups dose-dependently downregulated the expression of the aforementioned pyroptosis-related proteins (P<0.05, P<0.01). The low-dose LPS-ATP+XZP group reduced IL-1β levels (P<0.01), while the high-dose group reduced both IL-1β and IL-18 levels (P<0.01) Both the low- and high-dose LPS-ATP+XZP groups dose-dependently reduced membrane pore formation and intracellular ROS production (P<0.01). Compared with the blank group, the LPS-ATP group showed significantly reduced expression of mitophagy-related proteins PINK1 and Parkin, and a decreased ratio of microtubule-associated protein 1 light chain 3Ⅱ(LC3Ⅱ) to LC3Ⅰ(P<0.01), while p62 expression was significantly increased (P<0.01). Mitochondrial ROS levels were significantly enhanced (P<0.01). Compared with the LPS-ATP group, both the low- and high-dose LPS-ATP+XZP groups dose-dependently reversed the expression of these proteins (P<0.05, P<0.01) and reduced mitochondrial ROS levels (P<0.01). After treatment with the mitophagy inhibitor cyclosporin A (CsA), the beneficial effects of XZP on mitochondrial function and its inhibitory effects on pyroptosis-related protein expression were significantly reversed (P<0.05, P<0.01). ConclusionXZP reduces ROS levels by activating PINK1/Parkin-mediated mitophagy, thereby inhibiting NLRP3 inflammasome activation and microglial pyroptosis, which provides new molecular evidence for the mechanism by which XZP alleviates BCP.
3.Xiaozheng Zhitong Paste Relieves Bone Cancer Pain in Mice by Alleviating Activation of Microglia in Spinal Cord and Damage to Neurons via Blocking PAR2/NF-κB/NLRP3 Pathway
Guangda ZHENG ; Linghan MENG ; Lu SHANG ; Juanxia REN ; Dongtao LI ; Haixiao LIU ; Lingyun WANG ; Changlin LI ; Yaohua CHEN ; Guiping YANG ; Yanju BAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):91-100
ObjectiveTo investigate the effects and underlying mechanisms of Xiaozheng Zhitong Paste (XZP) on bone cancer pain (BCP). MethodsThirty female BALB/c mice were randomly divided into five groups: a Sham group, a BCP group, a BCP+low-dose XZP group, a BCP+high-dose XZP group, and a BCP+high-dose XZP + protease-activated receptor 2 (PAR2) agonist GB-110 group. BCP mice model was constructed by injecting Lewis lung carcinoma cells into the femoral cavity of the right leg, which was followed by being treated with XZP for 21 d. After 21 d, the mice were sacrificed. Nissl staining was used to evaluate the survival of spinal cord neurons. Immunofluorescence staining was conducted to localize ionized calcium-binding adapter molecule 1 (Iba1) and neuronal nuclear antigen (NeuN) in spinal cord tissue, thereby assessing microglial activation and neuronal survival. Enzyme-linked immunosorbent assay (ELISA) was employed to measure the levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), transforming growth factor-β (TGF-β), interleukin-4 (IL-4), and interleukin-10 (IL-10) in spinal cord tissue. Real-time quantitative polymerase chain reaction (Real-time PCR) was used to detect mRNA expression levels associated with M1/M2 polarization of microglia. Western blot analysis was performed to examine the expression of proteins related to microglial polarization as well as those involved in the PAR2/nuclear factor kappa B (NF-κB)/NOD-like receptor protein 3 (NLRP3) signaling pathway in the spinal cord. ResultsCompared with the Sham group, the spinal cord neurons were damaged, the number of Nissl-positive spinal cord neurons in the spinal cord tissue was significantly reduced (P<0.01), and the rate of NeuN-positive cells was significantly decreased (P<0.01). The spinal cord microglia were activated, the inflammatory level of the spinal cord tissue was enhanced, and Iba1 staining was significantly enhanced (P<0.01). The levels of IL-1β, TNF-α, IL-6, TGF-β, IL-4 and IL-10 were significantly increased (P<0.01). The mRNA expressions of IL-1β, TNF-α and inducible nitric oxide synthase (iNOS) were significantly increased (P<0.01), and the expression of PAR2, NLRP3, ASC and NF-κB p65 proteins in the spinal cord tissue of the BCP mice was significantly enhanced (P<0.01). Compared with the BCP group, high-dose XZP treatment significantly increased the number of Nissl-positive spinal cord neurons in the BCP mice (P<0.01), significantly enhanced the rate of NeuN-positive cells in the spinal cord tissue, and significantly weakened Iba1 staining (P<0.01). In addition, the levels of IL-1β, TNF-α, and IL-6 were significantly decreased, while the levels of TGF-β, IL-4, and IL-10 were significantly increased (P<0.05, P<0.01). The mRNA expression levels of IL-1β, TNF-α, and iNOS were decreased, whereas those of cluster of differentiation 206 (CD206), arginase-1 (Arg-1), and YM1/2 were significantly increased (P<0.05, P<0.01). Low-dose and high-dose XZP treatment significantly decreased the expression of PAR2, NLRP3, ASC, and NF-κB p65 proteins in the spinal cord tissue (P<0.05, P<0.01). These effects could all be significantly eliminated by the PAR2 agonist GB-110. ConclusionXZP can mitigate BCP in mice, which may be achieved through blocking the activated PAR2/NF-κB/NLRP3 pathway.
4.Xiaozheng Zhitong Paste Alleviates Bone Cancer Pain of Mice by Reducing Ferroptosis in Spinal Cord Tissue and Neuronal Damage via Regulating Nrf2/HO-1/GPX4/SLC7A11 Signaling Pathway
Juanxia REN ; Lu SHANG ; Guangda ZHENG ; Linghan MENG ; Lingyun WANG ; Changlin LI ; Dongtao LI ; Yaohua CHEN ; Guiping YANG ; Yanju BAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):101-113
ObjectiveThe paper aims to investigate the action mechanism by which the Xiaozheng Zhitong paste (XZP) relieves bone cancer pain (BCP). MethodsA model of mice with BCP was established by using Lewis tumor cells. The therapeutic effects of XZP, the ferroptosis inhibitor Ferrostatin-1 (Fer-1), and the nuclear factor erythroid 2-related factor 2 (Nrf2) inhibitor Brusatol (Bru) on BCP were examined. Mice were randomly divided into the Sham operation group, BCP group, BCP+XZP-L group, BCP+XZP-H group, BCP+Fer-1 group, and BCP+XZP-H+Bru group, with six mice in each group. Pain behavior tests were conducted on the mice to assess pain levels. Colorimetric assays were employed to measure ferroptosis-related factors in serum and spinal cord tissue including Fe, malondialdehyde (MDA), reactive oxygen species (ROS), and superoxide dismutase (SOD). Immunofluorescence staining was used to assess ROS production in spinal cord tissue. Transmission electron microscopy was used to observe the ultrastructure of mitochondria in lumbar spinal cord tissue. Quantitative real-time polymerase chain reaction (Real-time PCR) was employed to detect mRNA expression of Nrf2, heme oxygenase-1 (HO-1), glutathione peroxidase 4 (GPX4), and solute carrier family 7 member 11 (SLC7A11) in spinal cord neuron tissue. The protein expression of Nrf2, HO-1, GPX4, and SLC7A11 in spinal cord neurons was measured by Western blot. ResultsCompared with the Sham group, mice in the BCP group exhibited significantly reduced limb usage scores, mechanical foot withdrawal thresholds, and thermal foot withdrawal thresholds (P<0.01). Serum and lumbar spinal cord tissue levels of Fe, MDA, and reactive oxygen species (ROS) were significantly elevated (P<0.05), while superoxide dismutase (SOD) levels were significantly decreased (P<0.05). Lumbar spinal cord mitochondrial structural damage was observed, and mRNA and protein expression of Nrf2, HO-1, GPX4, and SLC7A11 were significantly downregulated (P<0.01). Compared with the BCP group, both low- and high-dose XZP groups improved the aforementioned pain behavioral indicators (P<0.05,P<0.01), reduced ferroptosis-related biomarkers including Fe, MDA, and ROS levels (P<0.05), increased SOD levels (P<0.05,P<0.01), alleviated mitochondrial damage, and upregulated Nrf2, HO-1, GPX4, SLC7A11 mRNA and protein expression (P<0.05,P<0.01). The high-dose XZP group exhibited comparable efficacy to Fer-1 in alleviating pain and inhibiting ferroptosis. Following Bru administration, XZP's effects on pain behavioral indicators, regulation of ferroptosis-related markers, mitochondrial structural protection, and activation of the Nrf2/HO-1/GPX4/SLC7A11 pathway were significantly reversed (P<0.05,P<0.01). ConclusionExternal application of XZP alleviates pain symptoms in BCP mice by activating the Nrf2/HO-1/GPX4/SLC7A11 pathway, thereby inhibiting ferroptosis and neuronal damage in spinal cord neurons.
5.Traditional Chinese Medicine for Cancer Pain Management: A Review
Lingyun WANG ; Guangda ZHENG ; Lu SHANG ; Juanxia REN ; Changlin LI ; Dongtao LI ; Haixiao LIU ; Yaohua CHEN ; Guiping YANG ; Yanju BAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):114-123
Cancer pain is one of the most common complications in patients with malignant tumors, severely affecting their quality of life. Its pathogenesis involves complex interactions among the tumor microenvironment, peripheral sensitization, and central sensitization. The tumor microenvironment initiates peripheral pain sensitization by secreting algogenic mediators, activating ion channels and related receptor signaling pathways, driving abnormal osteoclast activation, and mediating neuro-immune crosstalk. Persistent nociceptive input further triggers increased excitability of central neurons, activation of glial cells, and neuroinflammatory cascade reactions, ultimately leading to central pain sensitization. Although traditional opioid drugs can alleviate pain to some extent, they still have many limitations, such as incomplete analgesia, drug tolerance, and adverse reactions. In recent years, traditional Chinese medicine (TCM) compounds have made continuous progress in the treatment of cancer pain. Studies have shown that they can not only effectively relieve cancer pain and reduce the dosage of opioids but also significantly improve patients' quality of life. TCM treatment of cancer pain follows the principle of syndrome differentiation and treatment. Based on this, targeted therapeutic principles have been proposed, including promoting blood circulation, removing stasis, regulating Qi, and unblocking collaterals; tonifying the kidney, replenishing essence, warming Yang, and dispersing cold, activating blood, resolving phlegm, detoxifying, and dispersing nodules, as well as strengthening the body, replenishing deficiency, and harmonizing Qi and blood. Modern research indicates that TCM compounds can exert synergistic effects through multiple pathways, inhibiting inflammatory responses, regulating nerve conduction, intervening in bone metabolism and related gene expression, thereby producing anti-inflammatory and bone-protective effects to achieve the goal of alleviating cancer pain. This article systematically elaborates on the pathogenesis of cancer pain, the clinical application of TCM in treating cancer pain, and its related mechanisms of action, aiming to provide a theoretical basis and new strategies for the integration of TCM into comprehensive cancer pain management.
6.Analysis of factors influencing the achievement of target vancomycin plasma concentration and construction of a predictive model in patients from high-altitude regions: a single-center retrospective study
Ya’e CHANG ; NI ZHAO ; Zhilan HUAN ; Guiqin XU ; Xue WU ; Yafeng WANG
China Pharmacy 2026;37(2):198-203
OBJECTIVE To analyze the influencing factors for achieving target plasma drug concentration (trough) (abbreviated as “PDC”) of vancomycin in patients from high-altitude regions and establish a predictive model for PDC using single- center data, providing references for rational clinical drug use. METHODS Inpatients with vancomycin (1 g, q12 h) administered intravenously in our hospital from January 2021 to June 2024 were retrospectively included. Demographic data, liver and kidney function and hematological indexes were collected. Spearman correlation analysis was used to evaluate the correlation between vancomycin PDC and each detection index. Univariate analysis was used to evaluate the differences of each index in patients with different PDC, and the effects of different gender, body mass index, age and underlying diseases (hypertension/diabetes) on vancomycin PDC. Based on the results of correlation analysis and univariate analysis, multiple linear stepwise regression analysis was used to obtain the independent predictors of vancomycin PDC and construct the prediction model. RESULTS A total of 141 patients were included, with an overall attainment rate of 46.81% for the target PDC of vancomycin. Correlation analysis showed that the vancomycin PDC was positively correlated with age, blood urea nitrogen, uric acid (UA), serum creatinine (CRE) and β2- microglobulin (β2-MG), and negatively correlated with height, weight, creatinine clearance rate (CCR), glomerular filtration rate (GFR), alanine transaminase (ALT), hemoglobin (HGB), white blood cell count and neutrophils (P<0.05). There were significant differences in age, CRE and other 14 indexes among different PDC groups (P<0.05 or P<0.01). Age and underlying diseases had significant effects on vancomycin PDC (P<0.05 or P<0.01). CCR, direct bilirubin (DBil), β2-MG, UA, HGB and height (standardized coefficients were -0.371, 0.367, 0.169, 0.232, -0.140, -0.132; P<0.05) were independent predictors of vancomycin PDC. The F value of the regression equation was 34.858 (P<0.05), the R2 was 0.610, and the adjusted R2 was 0.592. CONCLUSIONS The vancomycin PDC of patients in high-altitude regions is affected by multiple factors such as renal function, liver function and hematological indexes. CCR, HGB and height could be used to predict vancomycin PDC negatively, while DBil, β2-MG and UA could be used to predict vancomycin PDC positively. The variables of the established prediction model could explain 59.2% of the variation of vancomycin PDC.
7.Research advances in liver venous deprivation
Bensong HE ; Ming XIAO ; Qijia ZHANG ; Canhong XIANG ; Yanxiong WANG ; Yingbo LI ; Zhishuo WANG
Journal of Clinical Hepatology 2025;41(1):183-188
Portal vein embolization (PVE) can induce atrophy of the embolized lobe and compensatory regeneration of the non-embolized lobe. However, due to inadequate regeneration of future liver remnant (FLR) after PVE, some patients remain unsuitable for hepatectomy after PVE. In recent years, liver venous deprivation (LVD), which combines PVE with hepatic vein embolization (HVE), has induced enhanced FLR regeneration. Compared with associating liver partition and portal vein ligation for staged hepatectomy (ALPPS), LVD triggers faster and more robust FLR regeneration, with lower incidence rate of postoperative complications and mortality rate. By reviewing related articles on LVD, this article introduces the effectiveness of LVD and analyzes the differences and safety of various technical paths, and it is believed that LVD is a safe and effective preoperative pretreatment method.
8.Association between behavioral lifestyle and incidence of cardiovascular disease in elderly people
Juan CHEN ; Xiaofeng MA ; Hong WANG
Journal of Public Health and Preventive Medicine 2025;36(1):152-155
Objective To investigate the lifestyle and cardiovascular disease in the elderly and analyze their association. Methods A simple random sampling method was used to select the elderly aged 60 years and above in a community of Xining from September 2022 to September 2023 as the study subjects. General demographic characteristics, prevalence of cardiovascular disease, living habits and activity status were collected by questionnaire. Demographic characteristics and life behavior habits were compared between the diseased and non-diseased groups, and multivariate logistic regression was used to analyze the influencing factors of cardiovascular disease in the elderly. Results A total of 784 subjects, 259 (33.04%) suffered from cardiovascular disease, with coronary heart disease and hypertension being the most common. In terms of disease risk, males were 1.378 times higher than females, non-income groups were 1.394 times higher than income groups, receiving health education/popular science < 1 time/month groups were 1.533 times higher than ≥ 2 times/month groups, combined diabetes or obesity groups were 1.490 times and 1.470 times higher than non-diabetes or obesity groups, salty fresh taste groups were 1.690 times higher than light taste groups, fresh fruit intake frequency ≤ 3 times/week groups were 1.492 times higher than >7 times/week groups, smoking ≥ 30 cigarettes/month groups were 2.257 times higher than non-smoking groups, drinking ≥ 2 liquors or 500 ml beer/day groups were 1.569 times higher than non-drinking groups, irregular physical examination habits groups were 1.619 times higher than regular physical examination habits groups, aerobic exercise did not reach the standard groups were 1.454 times higher than the standard groups. Conclusion Lifestyle is associated with cardiovascular disease in the elderly. It is important to carry out targeted health education and advocate healthy behavior lifestyle to prevent and treat cardiovascular disease.
9.Transfusion-transmitted hepatitis E
Baixun LI ; Tianxu LIU ; Liqin HUANG ; Yingnan DANG ; Lin WANG
Chinese Journal of Blood Transfusion 2025;38(1):38-42
Hepatitis E is an acute and self-limiting viral hepatitis caused by the hepatitis E virus (HEV). It has a higher mortality rate among immunosuppressed patients and pregnant women infected with HEV. Although HEV infections in humans are mostly caused by contaminated water or food worldwide, the incidence of transfusion-transmitted hepatitis E is continuously rising. Additionally, the prevalence of serum anti-HEV IgG in the blood donors in China is at a relatively high level, making it worth considering screening blood donors for HEV. This article briefly reviews the globally reported cases of transfusion-transmitted hepatitis E and the HEV screening strategies for blood donations.
10.Progress in the study of anti-inflammatory active components with anti-inflammatory effects and mechanisms in Caragana Fabr.
Yu-mei MA ; Ju-yuan LUO ; Tao CHEN ; Hong-mei LI ; Cheng SHEN ; Shuo WANG ; Zhi-bo SONG ; Yu-lin LI
Acta Pharmaceutica Sinica 2025;60(1):58-71
The plants of the genus


Result Analysis
Print
Save
E-mail