1.Endoscopic-assisted median nerve decompression combined with one-stage tendon transfer for reconstruction of thumb abduction in treatment of severe carpal tunnel syndrome.
Jiaxing SUI ; Yong YANG ; Zhenzhong WANG ; Xingjian HUANG ; Xuanyu JIANG ; Lihui ZHANG ; Haiyang LI
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(12):1510-1515
OBJECTIVE:
To investigate the effectiveness of endoscopic-assisted median nerve decompression with one-stage extensor indicis proprius (EIP) tendon transfer for reconstruction of thumb abduction in patients with severe carpal tunnel syndrome (CTS).
METHODS:
The clinical data of 12 patients with severe CTS who met the selection criteria between December 2019 and December 2024 were retrospectively analyzed. There were 2 males and 10 females with an average age of 55.4 years ranging from 35 to 67 years. The symptom duration of CTS was 12-120 months (mean, 48.7 months) and the thenar muscle atrophy duration was 6-48 months (mean, 13.4 months). The median nerve was released with the help of endoscope, and the EIP tendon was transferred to reconstruct the abduction function of the thumb. The operation time and complications were recorded. Two-point discrimination, palmar abduction angle of the thumb, radial abduction angle of the thumb, and pinch force of the thumb were measured and compared before operation and at last follow-up, and the effectiveness was evaluated by Kapandji score and Disabilities of the Arm, Shoulder and Hand (DASH) score. The satisfaction of the operation was evaluated at last follow-up.
RESULTS:
All surgeries were successfully completed with a mean operation time of 54 minutes (range, 45-68 minutes). All patients were followed up 6-50 months, with an average of 15.3 months. There was no complications such as wound infection, scar pain of wrist, or tendon rupture of transposition, and there were 3 cases of mild limitation of finger extension in the donor site of index finger. At last follow-up, two-point discrimination, palmar abduction angle of the thumb, radial abduction angle of the thumb, Kapandji score, and DASH score were significantly better than those before operation ( P<0.05), but there was no significant difference in thumb pinch force between pre- and post-operation ( P>0.05). The evaluation of surgical satisfaction showed that 7 cases were very satisfied and 5 cases were satisfied.
CONCLUSION
The combination of endoscopic-assisted median nerve decompression and one-stage EIP tendon transfer effectively improves hand function and quality of life in patients with severe CTS by restoring thumb abduction and alleviating neurological symptoms.
Humans
;
Tendon Transfer/methods*
;
Male
;
Middle Aged
;
Carpal Tunnel Syndrome/physiopathology*
;
Female
;
Decompression, Surgical/methods*
;
Aged
;
Adult
;
Thumb/physiopathology*
;
Endoscopy/methods*
;
Retrospective Studies
;
Median Nerve/surgery*
;
Treatment Outcome
;
Plastic Surgery Procedures/methods*
2.Research Progress on the Role of Mitophagy in Diabetic Ulcer
Xingjian MOU ; Wenting FU ; Sen LI ; Tao LIU ; Fulong ZHANG ; Yuan SONG ; Qiang LI ; Juan LU
Medical Journal of Peking Union Medical College Hospital 2024;15(6):1389-1394
Diabetic ulcer (DU), one of the common and serious complications in patients with diabetes mellitus, often leads to infection, necrosis and amputation, and has a long and costly treatment period. Because of DU's unclear healing mechanism and the difficulty of delayed healing, its treatment and management have been a major challenge in clinical medicine. In recent years, the potential role of mitochondrial autophagy in DU has become a research hotspot with the in-depth study of mitochondrial autophagy mechanism. Previous studies have shown that mitochondrial autophagy is an important intracellular self-repair mechanism that plays a crucial role in maintaining cellular health and functional stability. During the development of DU, mitochondrial autophagy plays multiple roles in attenuating oxidative stress and inflammatory responses, maintaining mitochondrial functional homeostasis, influencing cell proliferation and repair capacity during DU healing, promoting DU healing, and enhancing antimicrobial capacity. In this paper, we illustrate the multiple roles played by mitochondrial autophagy in DU prevention and treatment, as well as the potential applications of mitochondrial autophagy in DU therapy. It is expected to provide a basis for the clinical application of mitochondrial autophagy in DU treatment, and provide more effective strategies and solutions for the treatment of DU.
3.Sema3A secreted by sensory nerve induces bone formation under mechanical loads
Mei HONGXIANG ; Li ZHENGZHENG ; Lv QINYI ; Li XINGJIAN ; Wu YUMENG ; Feng QINGCHEN ; Jiang ZHISHEN ; Zhou YIMEI ; Zheng YULE ; Gao ZIQI ; Zhou JIAWEI ; Jiang CHEN ; Huang SHISHU ; Li JUAN
International Journal of Oral Science 2024;16(1):62-72
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling.Here,we focused on the role of Semaphorin 3A(Sema3A),expressed by sensory nerves,in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM)model.Firstly,bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold.Sema3A,rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM.Moreover,in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs)within 24 hours.Furthermore,exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload.Mechanistically,Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway,maintaining mitochondrial dynamics as mitochondrial fusion.Therefore,Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation,both as a pain-sensitive analgesic and a positive regulator for bone formation.
4.Sema3A secreted by sensory nerve induces bone formation under mechanical loads
Mei HONGXIANG ; Li ZHENGZHENG ; Lv QINYI ; Li XINGJIAN ; Wu YUMENG ; Feng QINGCHEN ; Jiang ZHISHEN ; Zhou YIMEI ; Zheng YULE ; Gao ZIQI ; Zhou JIAWEI ; Jiang CHEN ; Huang SHISHU ; Li JUAN
International Journal of Oral Science 2024;16(1):62-72
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling.Here,we focused on the role of Semaphorin 3A(Sema3A),expressed by sensory nerves,in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM)model.Firstly,bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold.Sema3A,rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM.Moreover,in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs)within 24 hours.Furthermore,exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload.Mechanistically,Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway,maintaining mitochondrial dynamics as mitochondrial fusion.Therefore,Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation,both as a pain-sensitive analgesic and a positive regulator for bone formation.
5.Research Progress on the Role of Mitophagy in Diabetic Ulcer
Xingjian MOU ; Wenting FU ; Sen LI ; Tao LIU ; Fulong ZHANG ; Yuan SONG ; Qiang LI ; Juan LU
Medical Journal of Peking Union Medical College Hospital 2024;15(6):1389-1394
Diabetic ulcer (DU), one of the common and serious complications in patients with diabetes mellitus, often leads to infection, necrosis and amputation, and has a long and costly treatment period. Because of DU's unclear healing mechanism and the difficulty of delayed healing, its treatment and management have been a major challenge in clinical medicine. In recent years, the potential role of mitochondrial autophagy in DU has become a research hotspot with the in-depth study of mitochondrial autophagy mechanism. Previous studies have shown that mitochondrial autophagy is an important intracellular self-repair mechanism that plays a crucial role in maintaining cellular health and functional stability. During the development of DU, mitochondrial autophagy plays multiple roles in attenuating oxidative stress and inflammatory responses, maintaining mitochondrial functional homeostasis, influencing cell proliferation and repair capacity during DU healing, promoting DU healing, and enhancing antimicrobial capacity. In this paper, we illustrate the multiple roles played by mitochondrial autophagy in DU prevention and treatment, as well as the potential applications of mitochondrial autophagy in DU therapy. It is expected to provide a basis for the clinical application of mitochondrial autophagy in DU treatment, and provide more effective strategies and solutions for the treatment of DU.
6.Sema3A secreted by sensory nerve induces bone formation under mechanical loads
Mei HONGXIANG ; Li ZHENGZHENG ; Lv QINYI ; Li XINGJIAN ; Wu YUMENG ; Feng QINGCHEN ; Jiang ZHISHEN ; Zhou YIMEI ; Zheng YULE ; Gao ZIQI ; Zhou JIAWEI ; Jiang CHEN ; Huang SHISHU ; Li JUAN
International Journal of Oral Science 2024;16(1):62-72
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling.Here,we focused on the role of Semaphorin 3A(Sema3A),expressed by sensory nerves,in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM)model.Firstly,bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold.Sema3A,rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM.Moreover,in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs)within 24 hours.Furthermore,exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload.Mechanistically,Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway,maintaining mitochondrial dynamics as mitochondrial fusion.Therefore,Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation,both as a pain-sensitive analgesic and a positive regulator for bone formation.
7.Sema3A secreted by sensory nerve induces bone formation under mechanical loads
Mei HONGXIANG ; Li ZHENGZHENG ; Lv QINYI ; Li XINGJIAN ; Wu YUMENG ; Feng QINGCHEN ; Jiang ZHISHEN ; Zhou YIMEI ; Zheng YULE ; Gao ZIQI ; Zhou JIAWEI ; Jiang CHEN ; Huang SHISHU ; Li JUAN
International Journal of Oral Science 2024;16(1):62-72
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling.Here,we focused on the role of Semaphorin 3A(Sema3A),expressed by sensory nerves,in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM)model.Firstly,bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold.Sema3A,rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM.Moreover,in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs)within 24 hours.Furthermore,exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload.Mechanistically,Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway,maintaining mitochondrial dynamics as mitochondrial fusion.Therefore,Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation,both as a pain-sensitive analgesic and a positive regulator for bone formation.
8.Sema3A secreted by sensory nerve induces bone formation under mechanical loads
Mei HONGXIANG ; Li ZHENGZHENG ; Lv QINYI ; Li XINGJIAN ; Wu YUMENG ; Feng QINGCHEN ; Jiang ZHISHEN ; Zhou YIMEI ; Zheng YULE ; Gao ZIQI ; Zhou JIAWEI ; Jiang CHEN ; Huang SHISHU ; Li JUAN
International Journal of Oral Science 2024;16(1):62-72
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling.Here,we focused on the role of Semaphorin 3A(Sema3A),expressed by sensory nerves,in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM)model.Firstly,bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold.Sema3A,rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM.Moreover,in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs)within 24 hours.Furthermore,exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload.Mechanistically,Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway,maintaining mitochondrial dynamics as mitochondrial fusion.Therefore,Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation,both as a pain-sensitive analgesic and a positive regulator for bone formation.
9.Sema3A secreted by sensory nerve induces bone formation under mechanical loads
Mei HONGXIANG ; Li ZHENGZHENG ; Lv QINYI ; Li XINGJIAN ; Wu YUMENG ; Feng QINGCHEN ; Jiang ZHISHEN ; Zhou YIMEI ; Zheng YULE ; Gao ZIQI ; Zhou JIAWEI ; Jiang CHEN ; Huang SHISHU ; Li JUAN
International Journal of Oral Science 2024;16(1):62-72
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling.Here,we focused on the role of Semaphorin 3A(Sema3A),expressed by sensory nerves,in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM)model.Firstly,bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold.Sema3A,rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM.Moreover,in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs)within 24 hours.Furthermore,exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload.Mechanistically,Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway,maintaining mitochondrial dynamics as mitochondrial fusion.Therefore,Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation,both as a pain-sensitive analgesic and a positive regulator for bone formation.
10.Sema3A secreted by sensory nerve induces bone formation under mechanical loads
Mei HONGXIANG ; Li ZHENGZHENG ; Lv QINYI ; Li XINGJIAN ; Wu YUMENG ; Feng QINGCHEN ; Jiang ZHISHEN ; Zhou YIMEI ; Zheng YULE ; Gao ZIQI ; Zhou JIAWEI ; Jiang CHEN ; Huang SHISHU ; Li JUAN
International Journal of Oral Science 2024;16(1):62-72
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling.Here,we focused on the role of Semaphorin 3A(Sema3A),expressed by sensory nerves,in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM)model.Firstly,bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold.Sema3A,rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM.Moreover,in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs)within 24 hours.Furthermore,exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload.Mechanistically,Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway,maintaining mitochondrial dynamics as mitochondrial fusion.Therefore,Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation,both as a pain-sensitive analgesic and a positive regulator for bone formation.

Result Analysis
Print
Save
E-mail